Skip to main content
Log in

Maximal flow through a domain

  • Published:
Mathematical Programming Submit manuscript

Abstract

In place of flows on a discrete network we study flows described by a vector field σ(x,y) in a plane domain ω. The analogue of the capacity constraint is |σ|≤c(x,y), and the strength of sources and sinks is σ·nf on the boundary and—div σ=λF in the interior. We show that the largest λ (the maximal flow) is determined by the minimal cut. As in the discrete case the dual problem has a 0–1 solution, given by the characteristic function of the minimal cut; for the continuous problem the argument depends on the coarea formula for functions of bounded variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Concus and R. Finn, “On capillary free surfaces in the absence of gravity”,Acta Mathematica 132 (1974) 177–198.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. DeGiorgi, “Su una teoria generale della misura (r−1)-dimensionale in una spazio adr dimensioni”,Annali di Matematica 36 (1954) 191–213.

    Article  MathSciNet  Google Scholar 

  3. H. Federer,Geometric measure theory (Springer-Verlag, New York, 1969).

    MATH  Google Scholar 

  4. W. Fleming, “Functions with generalized gradients and generalized surfaces”,Annali di Matermatica 44 (1954), 93–103.

    Article  MathSciNet  Google Scholar 

  5. W. Fleming and R. Rishel, “An integral formula for total gradient variation”,Archiv der Mathematik 11 (1960), 218–222.

    Article  MATH  MathSciNet  Google Scholar 

  6. L.R. Ford and D.R. Fulkerson,Flows in networks (Princeton University Press, Princeton, NJ, 1962).

    MATH  Google Scholar 

  7. E. Giusti, “On the equation of surfaces of prescribed mean curvature”,Inventiones Mathematicae 46 (1978) 111–137.

    Article  MATH  MathSciNet  Google Scholar 

  8. T.C. Hu,Integer programming and network flows (Addison-Wesley, Reading, MA, 1969).

    MATH  Google Scholar 

  9. R. Kohn and G. Strang, “Optimal design and convex analysis”, unpublished manuscript.

  10. R. Kohn and R. Teman, “Dual spaces of stresses and strains for Hencky plasticity”, unpublished manuscript.

  11. H. Matthies, G. Strang and E. Christiansen, “The saddle point of a differential program”, in: R. Glowinski, E. Rodin and O.C. Zienkiewicz, eds.,Energy methods in finite element analysis (John Wiley, New York, 1979) pp. 309–318.

    Google Scholar 

  12. E.J. McShane, “Extension of the range of functions”,Bulletin of the American Mathematical Society 40 (1934) 837–842.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Strang, “A minimax problem in plasticity theory”, in: M.Z. Nashed, ed.,Functional analysis methods in numerical analysis, Lecture notes in mathematics 701 (Springer-Verlag, Berlin, 1979) pp. 319–333.

    Chapter  Google Scholar 

  14. G. Strang and R. Kohn, “Optimal design of cylinders in shear”, MAFELAP Conference, Brunel University, England (1981), to appear.

  15. G. Strang and R. Teman, “A problem in capillarity and plasticity”,Mathematical Programming Study 17 (1982) 91–102.

    MATH  Google Scholar 

  16. R. Temam and G. Strang, “Duality and relaxation in the variational problems of plasticity”,Journal de Mécanique 19 (1980) 493–527.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strang, G. Maximal flow through a domain. Mathematical Programming 26, 123–143 (1983). https://doi.org/10.1007/BF02592050

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592050

Key words

Navigation