Skip to main content
Log in

Pointwise fourier inversion: A wave equation approach

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Functions of the Laplace operator F(− Δ) can be synthesized from the solution operator to the wave equation. When F is the characteristic function of [0, R2], this gives a representation for radial Fourier inversion. A number of topics related to pointwise convergence or divergence of such inversion, as R → ∞, are studied in this article. In some cases, including analysis on Euclidean space, sphers, hyperbolic space, and certain other symmetric spaces, exact formulas for fundamental solutions to wave equations are available. In other cases, parametrices and other tools of microlocal analysis are effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, V., Varchenko, A. and Gusein-Zade, S. (1985).Singularities of Differentiable Mappings, I, Classification of Critical Points, Caustics, and Wave Fronts. Birkhauser, Boston;II, Monodromy and Asymptotics of Integrals, Nauka, Moscow, 1984.

    Google Scholar 

  2. Berger, M., Gauduchon, P. and Mazet, E. (1970).Le Spectre d’une Variete Riemannienne, LNM#194, Springer, New York.

    Google Scholar 

  3. Bochner, S. (1931). Ein Konvergenzsatz für mehrvariablige Fouriersche Integrale,Math. Zeit. 34, 440–447.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bochner, S. (1959).Lectures on Fourier Integrals, Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  5. Carberry, A. and Soria, F. (1988). Almost-every where convergence of Fourier integrals for functions in Sobolev spaces, and anL 2-localisation principle,Revista Mat. Iberoamericana 4, 319–337.

    Google Scholar 

  6. Carleson, L. (1966). On convergence and growth of partial sums of Fourier series.Acta Math. 116, 135–157.

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheeger, J., Gromov, M. and Taylor, M. (1982). Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds.J. Diff. Geom. 17, 15–53.

    MATH  MathSciNet  Google Scholar 

  8. Cheeger, J. and Taylor, M. (1982). Diffraction of waves by conical singularities.Comm. Pure Appl. Math. 35, 275–331, 487–529.

    Article  MATH  MathSciNet  Google Scholar 

  9. Colzani, L., Crespi, A., Travaglini, G. and Vignati, M. (1993). Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in Euclidean and noneuclidean spaces.Trans. AMS 338, 43–55.

    Article  MATH  MathSciNet  Google Scholar 

  10. Colzani, L., Crespi, A., Travaglini, G. and Vignati, M. (1992). The Hilbert transform with exponential weights.Proc. AMS 114, 451–457.

    Article  MATH  Google Scholar 

  11. Colzani, L. and Vignati, M. (1995). Gibbs phenomena for multiple Fourier integrals.J. Approximation Theory 80, 119–131.

    Article  MATH  MathSciNet  Google Scholar 

  12. Courant, R. and Hilbert, D. (1966).Methods of Mathematical Physics II, John Wiley & Sons, New York.

    Google Scholar 

  13. Darboux, M. (1874). Sur les series dont le terme general depend de deux angles et qui servent a exprimer des fonctions arbitraires entre des limites donnees.J. Math. Pures Appl. 19, 1–18.

    Google Scholar 

  14. Davies, E.B., Simon, B. and Taylor, M. (1988).L p spectral theory of Kleinian groups.J. Funct. Anal. 78, 116–136.

    Article  MATH  MathSciNet  Google Scholar 

  15. Duistermaat, J. (1996).Fourier Integral Operators, 2nd ed. Birkhauser, Boston.

    MATH  Google Scholar 

  16. Duistermaat, J. (1974). Oscillatory integrals, Lagrange immersions and unfolding of singularities.Comm. Pure Appl. Math. 27, 207–281.

    Article  MATH  MathSciNet  Google Scholar 

  17. Federer, H. (1970). On spherical summation of the Fourier transform of a distribution whose partial derivatives are represented by integration.Ann. Math. 91, 136–143.

    Article  MathSciNet  Google Scholar 

  18. Fefferman, C. (1971). The multiplier problem for the ball.Ann. of Math. 94, 330–336.

    Article  MathSciNet  Google Scholar 

  19. Friedlander, F. (1958).Sound Pulses, Cambridge University Press, Cambridge, MA.

    MATH  Google Scholar 

  20. Gray, A. and Pinsky, M. (1993). Gibbs’ phenomenon for Fourier-Bessel series.Expositiones Math. 11, 123–135.

    MATH  MathSciNet  Google Scholar 

  21. Guillemin, V. and Sternberg, S. (1977). Geometric Asymptotics,Amer. Math. Soc., Providence, RI.

    MATH  Google Scholar 

  22. Helgason, S. (1978).Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York.

    MATH  Google Scholar 

  23. Helgason, S. (1992). Huygens’principle for wave equations on symmetric spaces.Jour. Funct. Anal. 107, 279–288.

    Article  MATH  MathSciNet  Google Scholar 

  24. Hörmander, L. (1985).The Analysis of Linear Partial Differential Operators, Vols. 3–4, Springer, New York.

    Google Scholar 

  25. Hörmander, L. (1968). The spectral function of an elliptic operator.Acta Math. 121, 193–218.

    Article  MATH  MathSciNet  Google Scholar 

  26. Hunt, R. (1967). On the convergence of Fourier series, inOrthogonal Expansions and their Continuous Analogues (D. Haimo, ed.), Southern Illinois University Press, pp. 235–255.

  27. Kahane, J. (1995). Le phenomene de Pinsky et la geometrie des surfaces.C.R. Acad. Sci. Paris 321, 1027–1029.

    MATH  MathSciNet  Google Scholar 

  28. Kenig, C., Stanton, R. and Tomas, P. (1982). Divergence of eigenfunction expansions.J. Funct. Anal. 46, 28–44.

    Article  MATH  MathSciNet  Google Scholar 

  29. Lebedev, N. (1972).Special Functions and Their Applications, Dover, New York.

    MATH  Google Scholar 

  30. Majda, A. and Taylor, M. (1977). Inverse scattering problems for transparent obstacles, electromagnetic waves, and hyperbolic systems.Comm. PDE 2, 395–438.

    MATH  MathSciNet  Google Scholar 

  31. Melrose, R. (1979). Singularities and energy decay in acoustical scattering.Duke Math. J. 46, 43–59.

    Article  MATH  MathSciNet  Google Scholar 

  32. Melrose, R. and Sjöstrand, J. (1978), (1982). Singularities of boundary problems, I.Comm. Pure Appl. Math. 31, 593–617; II,Comm. Pure Appl. Math. 35, 129–168.

    Article  MATH  MathSciNet  Google Scholar 

  33. Melrose, R. and Taylor, M. (1986). The radiation pattern of a diffracted wave near the shadow boundary.Comm. PDE 11, 599–672.

    MATH  MathSciNet  Google Scholar 

  34. Morawetz, C. (1975). Notes on time decay and scattering for some hyperbolic problems.Reg. Conf. Ser. Appl. Math. #19, SIAM.

  35. Morawetz, C., Ralston, J. and Strauss, W. (1977). Decay of solutions of the wave equation outside nontrapping obstacles.Comm. Pure Appl. Math. 30, 447–508.

    Article  MATH  MathSciNet  Google Scholar 

  36. Olafsson, G. and Schlichtkrull, H. (1992). Wave propagation on Riemannian symmetric spaces.J. Funct. Anal. 107, 270–278.

    Article  MATH  MathSciNet  Google Scholar 

  37. Pinsky, M. (1993). Problem #10295,Amer. Math. Monthly 100, 291.

    Google Scholar 

  38. Pinsky, M. (1994). Pointwise Fourier inversion and related eigenfunction expansions.Comm. Pure Appl. Math. 47, 653–681.

    Article  MATH  MathSciNet  Google Scholar 

  39. Pinsky, M. (1995). Pointwise Fourier inversion in several variables.Notices AMS 42, 330–334.

    MATH  MathSciNet  Google Scholar 

  40. Pinsky, M. (1981). On the spectrum of Cartan-Hadamard manifolds.Pacific J. Math. 94, 223–230.

    MATH  MathSciNet  Google Scholar 

  41. Pinsky, M. and Prather, C. (1996). Pointwise convergence ofn-dimensional Hermite expansions.Jour. Math. Anal. Appl. 199, 620–628.

    Article  MATH  MathSciNet  Google Scholar 

  42. Pinsky, M., Stanton, N. and Trapa, P. (1993). Fourier series of radial functions in several variables.J. Funct. Anal. 116, 111–132.

    Article  MATH  MathSciNet  Google Scholar 

  43. Ralston, J. (1979). Note on the decay of acoustic waves.Duke Math. J. 46, 799–804.

    Article  MATH  MathSciNet  Google Scholar 

  44. Sogge, C. (1987). On the convergence of Riesz means on compact manifolds.Ann. Math. 126, 439–447.

    Article  MathSciNet  Google Scholar 

  45. Sogge, C. (1993).Fourier Integrals in Classical Analysis. Cambridge University Press, Cambridge, MA.

    MATH  Google Scholar 

  46. Sommerfeld, A. (1896). Mathematische theorie der diffraction.Math. Ann. 47, 317–374.

    Article  MathSciNet  MATH  Google Scholar 

  47. Stein, E. (1993).Harmonic Analysis, Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  48. Stein, E. (1976). Maximal functions: spherical means.Proc. NAS, U.S.A. 73, 2174–2175.

    Article  MATH  Google Scholar 

  49. Szegö, G. (1975).Orthogonal Polynomials, Colloq. Publ. #23, 4th ed., AMS, Providence, RI.

    MATH  Google Scholar 

  50. Taylor, M. (1981).Pseudodifferential Operators, Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  51. Taylor, M. (1986).Noncommutative Harmonic Analysis, Math. Surveys, Amer. Math. Soc., Providence, RI.

    MATH  Google Scholar 

  52. Taylor, M. (1989).L p estimates on functions of the Laplace operator.Duke Math. J. 58, 773–793.

    Article  MATH  MathSciNet  Google Scholar 

  53. Taylor, M. (1996).Partial Differential Equations, Vols. 1–3, Springer-Verlag, New York.

    Google Scholar 

  54. Thangavelu, S. (1993).Lectures on Hermite and Laguerre Expansions. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  55. Vega, L. (1988). Schrödinger equations: pointwise convergence to the initial data.Proc. AMS 102, 874–878.

    Article  MATH  MathSciNet  Google Scholar 

  56. Weyl, H. (1909). Die Gibb’sche Erscheinung in der Theorie Kugelfunktionen.Rend. Circ. Math. Palermo 29, 308–323.

    Article  Google Scholar 

  57. Zygmund, A. (1959).Trigonometric Series, Cambridge University Press, Cambridge, MA.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinsky, M.A., Taylor, M.E. Pointwise fourier inversion: A wave equation approach. The Journal of Fourier Analysis and Applications 3, 647–703 (1997). https://doi.org/10.1007/BF02648262

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648262

Keywords

Navigation