Skip to main content
Log in

Martingales with values in uniformly convex spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Using the techniques of martingale inequalities in the case of Banach space valued martingales, we give a new proof of a theorem of Enflo: every super-reflexive space admits an equivalent uniformly convex norm. Letr be a number in ]2, ∞[; we prove moreover that if a Banach spaceX is uniformly convex (resp. ifδ x(ɛ)/ɛ r whenɛ → 0) thenX admits for someq<∞ (resp. for someq<r) an equivalent norm for which the corresponding modulus of convexity satisfiesδ(ɛ)/ɛ q → ∞ whenɛ → 0. These results have dual analogues concerning the modulus of smoothness. Our method is to study some inequalities for martingales with values in super-reflexive or uniformly convex spaces which are characteristic of the geometry of these spaces up to isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Assouad,Martingales et réarrangements dans les espaces uniformément lisses, C. R. Acad. Sci. Paris, Série A,279 (1974), 741–744.

    MATH  MathSciNet  Google Scholar 

  2. B. Beauzamy,Opérateurs Uniformément Convexifiants, preprint, Ecole Polytechnique, Paris.

  3. A. Beck,A convexity condition in normed linear spaces and the strong law of large numbers, Proc. Amer. Math. Soc.13 (1962), 329–334.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Brunel and L. Sucheston,Sur quelques conditions équivalentes à la super-réflexivité dans les espaces de Banach, C. R. Acad. Sci. Paris, Série A,275 (1972), 993–994.

    MATH  MathSciNet  Google Scholar 

  5. D. Burkholder,Maximal inequalities as necessary conditions for almost everywhere convergence, Z. Wahrscheinlichkeitstheorie3 (1964), 75–88.

    Article  MATH  MathSciNet  Google Scholar 

  6. S. D. Chatterji,Martingale convergence and the Radon-Nikodym theorem in Banach spaces, Math. Scand.22 (1968), 21–41.

    MATH  MathSciNet  Google Scholar 

  7. P. Enflo,Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math.13 (1972), 281–288.

    MathSciNet  Google Scholar 

  8. T. Figiel,Example of an infinite dimensional Banach space non-isomorphic to its cartesian square, Studia Math.42 (1972), 295–306.

    MATH  MathSciNet  Google Scholar 

  9. T. Figiel,Conference at the Aarhus meeting on random series, convex sets and the geometry of Banach spaces, Aarhus preprint series, December 1974.

  10. T. Figiel and W. B. Johnson,A uniformly convex space which contains no l p, to appear.

  11. T. Figiel and G. Pisier,Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses, C. R. Acad. Sci. Paris, Série A,279 (1974), 611–614.

    MATH  MathSciNet  Google Scholar 

  12. A. Garsia,Martingale inequalities — Seminar notes on recent progress, Benjamin, New York.

  13. R. C. James,Some self dual properties of normed linear spaces, Ann. of Math. Studies69 1972.

  14. R. C. James,Super-reflexive spaces with bases, Pacific J. Math.41 (1972), 409–419.

    MathSciNet  Google Scholar 

  15. R. C. James,A non-reflexive space which is uniformly non-octahedral, Israel J. Math.18 (1974), 145–155.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Kwapień,Isomorphic characterization of inner product spaces by orthogonal series with vector valued coefficients, Studia Math.44 (1972), 583–595.

    MathSciNet  Google Scholar 

  17. J. Lindenstrauss,On the modulus of smoothness and divergent series in Banach spaces, Michigan Math. J.10 (1963), 241–252.

    Article  MathSciNet  Google Scholar 

  18. J. Lindenstrauss and L. Tzafriri,Classical Banach Spaces, Lecture notes 338, Springer-Verlag 1973.

  19. B. Maurey et G. Pisier,Séries de variables aléatoires indépendantes et propriétés géométriques des espaces de Banach, to appear.

  20. Séminaire Maurey Schwartz 73–74, Ecole Polytechnique, Paris.

  21. J. Neveu,Martingales à Temps Discret, Masson, Paris 1973.

    Google Scholar 

  22. G. Nordlander,The modulus of convexity in normed linear spaces, Ark. Mat.4 (1960), 15–17.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Pisier,Martingales à valeurs dans les espaces uniformément convexes, C. R. Acad. Sci. Paris, Série A,279 (1974), 647–649.

    MATH  MathSciNet  Google Scholar 

  24. J. J. Schaeffer and K. Sundaresan,Reflexivity and the girth of spheres, Math. Ann.184 (1970), 163–168.

    Article  MATH  MathSciNet  Google Scholar 

  25. E. C. Titchmarsh,Reciprocal formulae involving series and integrals, Math. Z.25 (1926), 321–381.

    Article  MathSciNet  Google Scholar 

  26. Bui-Minh-Chi and V. I. Gurarii,Some characteristics of normed spaces and their applications to the generalization of Parseval’s inequality for Banach spaces, Sbor. Theor. Funct., Funct. Anal. and Applications8 (1969), 74–91 (Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisier, G. Martingales with values in uniformly convex spaces. Israel J. Math. 20, 326–350 (1975). https://doi.org/10.1007/BF02760337

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760337

Keywords

Navigation