Skip to main content
Log in

Retract rational fields and cyclic Galois extensions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In [23], this author began a study of so-called lifting and approximation problems for Galois extensions. One primary point was the connection between these problems and Noether’s problem. In [24], a similar sort of study was begun for central simple algebras, with a connection to the center of generic matrices. In [25], the notion of retract rational field extension was defined, and a connection with lifting questions was claimed, which was used to complete the results in [23] and [24] about Noether's problem and generic matrices. In this paper we, first of all, set up a language which can be used to discuss lifting problems for very general “linear structures”. Retract rational extensions are defined, and proofs of their basic properties are supplied, including their connection with lifting. We also determine when the function fields of algebraic tori are retract rational, and use this to further study Noether’s problem and cyclic 2-power Galois extensions. Finally, we use the connection with lifting to show that ifp is a prime, then the center of thep degree generic division algebra is retract rational over the ground field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. A. Albert,Structure of Algebras, Am. Math. Soc., Providence, 1961.

    Google Scholar 

  2. S. A. Amitsur and D. J. Saltman,Generic abelian crossed products and p-algebras, J. Algebra51 (1978), 76–87.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Auslander and A. Brumer,Brauer groups of discrete valuation rings, Nederl. Akad. Wetensch. Proc., Ser. A,71 (1968), 288–296.

    Google Scholar 

  4. J. W. S. Cassels and A. Frohlich, eds.,Algebraic Number Theory, Thompson Book Co., Washington, D. C., 1967.

    MATH  Google Scholar 

  5. S. U. Chase, D. K. Harrison and A. Rosenberg,Galois theory and Galois cohomology of commutative rings, Mem. Am. Math. Soc.52 (1968), 1–19.

    MathSciNet  Google Scholar 

  6. J.-L. Colliot-Thelene and J.-J. Sansuc,La R-equivalence sur les Tores, Ann. Sci. Ec. Norm. Sup. 4e serie10 (1977), 175–230.

    MATH  MathSciNet  Google Scholar 

  7. F. DeMeyer and E. Ingraham,Separable Algebras Over Commutative Rings, in Lecture Notes in Mathematics, No. 181, Springer-Verlag, Berlin/Heidelberg/New York, 1971.

    Google Scholar 

  8. S. Endo and T. Miyata,On a classification of the function fields of algebraic tori, Nagoya Math. J.56 (1975), 85–104.

    MATH  MathSciNet  Google Scholar 

  9. B. Fein and M. Schacher,Brauer groups of rational function fields over global fields, inGroupe de Brauer (M. Kervaire and M. Ojanguren eds.), Lecture Notes in Mathematics, No. 844, Springer-Verlag, Berlin/Heidelberg/New York, 1981.

    Google Scholar 

  10. E. Formanek,The center of the ring of 3×3 generic matrices, Linear Multilinear Algebra7 (1979), 203–212.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Formanek,The center of the ring of 4×4 generic matrices, J. Algebra62 (1980), 304–320.

    Article  MATH  MathSciNet  Google Scholar 

  12. L. Goldstein,Analytic Number Theory, Prentice Hall, Englewood Cliffs, N.J., 1971.

    MATH  Google Scholar 

  13. N. Jacobson,Basic Algebra I, W. H. Freeman, San Francisco, 1974.

    MATH  Google Scholar 

  14. N. Jacobson,PI-Algebras, Lecture Notes in Mathematics, No. 441, Springer-Verlag, Berlin/Heidelberg/New York, 1975.

    MATH  Google Scholar 

  15. M. A. Knus and M. Ojanguren,A norm for modules and algebras, Math. Z.142 (1975), 33–45.

    Article  MATH  MathSciNet  Google Scholar 

  16. H. W. Lenstra,Rational functions invariant under a finite abelian group, Invent. Math.25 (1974), 299–325.

    Article  MATH  MathSciNet  Google Scholar 

  17. H. Miki,On Grunwald-Hasse-Wang's theorem, J. Math. Soc. Jpn.30 (1978), 313–325.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Orzech and C. Small,the Brauer Group of Commutative Rings, Marcel Dekker, Inc., New York, 1975.

    MATH  Google Scholar 

  19. N. Popescu,Abelian Categories with Applications to Rings and Modules, Academic Press, London/New York, 1973.

    MATH  Google Scholar 

  20. C. Procesi,Rings with Polynomial Indentities, Marcel Dekker, New York, 1973.

    Google Scholar 

  21. I. Reiner,Maximal Orders, Academic Press, London, 1975.

    MATH  Google Scholar 

  22. D. J. Saltman,Azumaya algebras with involution, J. Algebra52 (1978), 526–539.

    Article  MATH  MathSciNet  Google Scholar 

  23. D. J. Saltman,Generic Galois extensions and problems in field theory, Adv. in Math.43 (1982), 250–283.

    Article  MATH  MathSciNet  Google Scholar 

  24. D. J. Saltman,Generic algebras, inBrauer Groups in Ring Theory and Algebraic Geometry (F. Oystaeyen and A. Verschoren, eds.), Lecture Notes in Mathematics, No. 917, Springer-Verlag, Berlin/Heidelberg/New York, 1982.

    Google Scholar 

  25. D. J. Saltman,Generic structures and field theory, inAlgebraists' Homage (G. Seligman et al., eds.), American Mathematical Society, Providence, R.I., 1982.

    Google Scholar 

  26. Y. Sueyoshi,A note on Miki's generalization of the Grunwald-Hasse-Wang theorem, preprint.

  27. R. Swan,Invariant rational functions and a problem of Steenrod, Invent. Math.7 (1969), 148–58.

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Swan,Galois Theory, inEmmy Noether (J. Brewer and M. Smith, eds.), Marcel Dekker, New York, 1981.

    Google Scholar 

  29. E. Voskrenskiy,Stable equivalence of algebraic tori, Izv. Akad. Nauk SSSR Ser. Mat.38 (1974), 3–10 (English transl.: Math. USSR Isv.8 (1974), 1–7).

    MathSciNet  Google Scholar 

  30. E. Witt,Schiefkorper uber diskret bewerten Korpern, J. für Math.176 (1937), 31–44.

    Google Scholar 

  31. H. Zassenhaus,On structural stability, Commun. Algebra8 (1980), 1799–1844.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author is grateful for NSF support under grant #MCS79-04473.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltman, D.J. Retract rational fields and cyclic Galois extensions. Israel J. Math. 47, 165–215 (1984). https://doi.org/10.1007/BF02760515

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760515

Keywords

Navigation