Skip to main content
Log in

Martin boundaries of random walks on Fuchsian groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let Γ be a finitely generated non-elementary Fuchsian group, and let μ be a probability measure with finite support on Γ such that supp μ generates Γ as a semigroup. If Γ contains no parabolic elements we show that for all but a small number of co-compact Γ, the Martin boundaryM of the random walk on Γ with distribution μ can be identified with the limit set Λ of Γ. If Γ has cusps, we prove that Γ can be deformed into a group Γ', abstractly isomorphic to Γ, such thatM can be identified with Λ', the limit set of Γ'. Our method uses the identification of Λ with a certain set of infinite reduced words in the generators of Γ described in [15]. The harmonic measure ν (ν is the hitting distribution of random paths in Γ on Λ) is a Gibbs measure on this space of infinite words, and the Poisson boundary of Γ, μ can be identified with Λ, ν.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Birkhoff,Extensions of Jentzsch's theorem, Trans. Am. Math. Soc.85 (1957), 219–227.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Bowen,Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer Lecture Notes470 (1975).

  3. Y. Derriennic,Marche aléatoire sur le groupe libre et frontière de Martin, Z. Wahrscheinlichkeitstheor. Verw. Geb.32 (1975), 261–276.

    Article  MATH  MathSciNet  Google Scholar 

  4. Y. Derriennic and Y. Guivarc'h,Théorème de renouvellement pour les groupes nonmoyennables, C.R. Acad. Sci. Paris277 (1973), 613–615.

    MATH  MathSciNet  Google Scholar 

  5. E. B. Dynkin and M. B. Malyutov,Random walks on groups with a finite number of generators, Sov. Math. Dokl.2 (1961), 399–402.

    MATH  Google Scholar 

  6. E. B. Dynkin and A. A. Yushkevich,Markov Processes: Theorems and Problems, New York, Plenum Press, 1969.

    Google Scholar 

  7. W. Floyd,Group completions and limit sets of Kleinian groups, Invent. Math.57 (1980), 205–218.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. R. Ford,Automorphic Functions, McGraw-Hill, New York, 1929.

    MATH  Google Scholar 

  9. H. Furstenberg,Non-commuting random products, Trans. Am. Math. Soc.108 (1963), 377–428.

    Article  MATH  MathSciNet  Google Scholar 

  10. H. Furstenberg,Random walks and discrete subgroups of Lie groups, Advances in Probability and Related Topics, Vol. 1, Dekker, New York, 1971, pp. 1–63.

    Google Scholar 

  11. J. Kemeny, J. Snell and A. Knapp,Denumerable Markov Chains, Van Nostrand, Amsterdam, 1966.

    MATH  Google Scholar 

  12. B. Maskit,On Poincare's theorem for fundamental polygons, Adv. Math.7 (1971), 219–230.

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Ruelle,Characteristic exponents and invariant manifolds in Hilbert space, I.H.E.S., preprint, 1980.

  14. E. Seneta,Non-Negative Matrices, Allen and Unwin, London, 1973.

    MATH  Google Scholar 

  15. C. Series,The infinite word problem and limit sets in Fuchsian groups, J. Ergodic Theory and Dynamical Systems1 (1981), 337–360.

    MATH  MathSciNet  Google Scholar 

  16. V. Titulabin,On limit theorems for the products of random matrices, Theory Probab. and its Appl.10 (1965), 15–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Series, C. Martin boundaries of random walks on Fuchsian groups. Israel J. Math. 44, 221–242 (1983). https://doi.org/10.1007/BF02760973

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02760973

Keywords

Navigation