Skip to main content
Log in

Stability and instability of relativistic electrons in classical electromagnetic fields

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The stability of matter composed of electrons and static nuclei is investigated for a relativistic dynamics for the electrons given by a suitably projected Dirac operator and with Coulomb interactions. In addition there is an arbitrary classical magnetic field of finite energy. Despite the previously known facts that ordinary nonrelativistic matter with magnetic fields, or relativistic matter without magnetic fields, is already unstable when a, the fine structure constant, is too large, it is noteworthy that the combination of the two is still stableprovided the projection onto the positive energy states of the Dirac operator, whichdefines the electron, is chosen properly. A good choice is to include the magnetic field in the definition. A bad choice, which always leads to instability, is the usual one in which the positive energy states are defined by the free Dirac operator. Both assertions are proved here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. A. Bethe and E. E. Salpeter. Quantum mechanics of one- and two-electron atoms. In S. Flügge, editor,Handbuch der Physik, XXXV, pages 88–436. Springer, Berlin, 1 edition, 1957.

    Google Scholar 

  2. M. S. Birman, L. S. Koplienko, and M. Z. Solomyak. Estimates for the spectrum of the difference between fractional powers of two self-adjoint operators.Soviet Mathematics 19(3): 1–6, 1975. Translation of Izvestija vyssich.

    Google Scholar 

  3. G. Brown and D. Ravenhall. On the interaction of two electrons.Proc. Roy. Soc. London A 208(A 1095):552–559, September 1951.

    MATH  ADS  MathSciNet  Google Scholar 

  4. L. Bugliaro, J. Fröhlich, G. M. Graf, J. Stubbe, and C. Fefferman. A Lieb-Thirring bound for a magnetic Pauli Hamiltonian.Preprint, ETH-TH/96-31, 1996.

  5. J. G. Conlon. The ground state energy of a classical gas.Commun. Math. Phys. 94(4): 439–458, August 1984.

    Article  ADS  MathSciNet  Google Scholar 

  6. I. Daubechies. An uncertainty principle for Fermions with generalized kinetic energy.Commun. Math. Phys. 90:511–520, September 1983.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. F. J. Dyson and A. Lenard. Stability of matter I.J. Math. Phys. 8:423–434, 1967.

    Article  MATH  ADS  Google Scholar 

  8. F. J. Dyson and A. Lenard. Stability of matter II.J. Math. Phys. 9:698–711, 1967.

    Google Scholar 

  9. W. D. Evans, P. Perry, and H. Siedentop. The spectrum of relativistic one-electron atoms according to Bethe and Salpeter.Commun. Math. Phys. 18:733–746, July 1996.

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Federbush. A new approach to the stability of matter problem.I. J. Math. Phys. 16:347–351, 1975.

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Fefferman. Stability of relativistic matter with magnetic fields.Proc. Nat. Acad. Sci. USA 92:5006–5007, 1995.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. C. Fefferman, J. Fröhlich, and G. M. Graf. Stability of ultraviolet-cutoff quantum electrodynamics with non-relativistic matter.Texas Math. Phys. Preprint server 96–379, 1996.

  13. J. Fröhlich, E. H. Lieb, and M. Loss. Stability of Coulomb systems with magnetic fields. I: The one-electron atom.Commun. Math. Phys. 104:251–270, 1986.

    Article  MATH  ADS  Google Scholar 

  14. Y. Ishikawa and K. Koc. Relativistic many-body perturbation theory based on the no-pair Dirac-Coulomb-Breit Hamiltonian: Relativistic correlation energies for the noble-gas sequence through Rn (Z=86), the group-IIB atoms through Hg, and the ions of Ne isoelectronic sequence.Phys. Rev. A 50(6):4733–4742, December 1994.

    Article  ADS  Google Scholar 

  15. H. J. A. Jensen, K. G. Dyall, T. Saue, and K. Faegri. Jr., Relativistic four-component multiconfigurational self-consistent-field theory for molecules: Formalism.J. Chem. Physics 104(11):4083–4097, March 1996.

    Article  ADS  Google Scholar 

  16. E. H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities.Annals of Mathematics 118:349–374, 1983.

    Article  MathSciNet  Google Scholar 

  17. E. H. Lieb. On characteristic exponents in turbulence.Commun. Math. Phys. 92:473–480, 1984.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. E. H. Lieb and M. Loss. Stability of Coulomb systems with magnetic fields. II: The manyelectron atom and the one-electron molecule.Commun. Math. Phys. 104:271–282, 1986.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. E. H. Lieb, M. Loss, and H. Siedentop. Stability of relativistic matter via Thomas-Fermi theory.Helv. Phys. Acta 69:974–984, 1996.

    MATH  MathSciNet  Google Scholar 

  20. E. H. Lieb, M. Loss, and J. P. Solovej. Stability of matter in magnetic fields.Phys. Rev. Lett. 75(6):985–989, August 1995.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. E. H. Lieb and W. E. Thirring. Bound for the kinetic energy of Fermions which proves the stability of matter.Phys. Rev. Lett. 35(11):687–689, September 1975. Erratum:Phys. Rev. Lett. 36(16):11116, October 1975.

    Article  ADS  Google Scholar 

  22. E. H. Lieb and W. E. Thirring. Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. In E. H. Lieb, B. Simon, and A. S. Wightman, editors,Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann. Princeton University Press, Princeton, 1976.

    Google Scholar 

  23. E. H. Lieb and H.-T. Yau. The stability and instability of relativistic matter.Common. Math Phys. 118:177–213, 1988.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. J. Sucher. Foundations of the relativistic theory of many-electron atoms.Phys. Rev. A 22(2):348–362, August 1980.

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Sucher. Foundations of the relativistic theory of many-electron bound states.International Journal of Quantum Chemistry 25:3–21, 1984.

    Article  Google Scholar 

  26. J. Sucher. Relativistic many-electron Hamiltonians.Phys. Scripta 36:271–281, 1987.

    Article  ADS  Google Scholar 

  27. W. Thirring, ed.The Stability of Matter. From Atoms to Stars, Selecta of Elliott H. Lieb, Springer-Verlag, Berlin, Heidelberg, New York, 1997.

    Google Scholar 

  28. E. H. Lieb, H. Siedentop, and J. P. Solovej. Stability of relativistic matter with magnetic fields.Phys. Rev. Lett. 79:1785, 1997.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Bernard Jancovici on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieb, E.H., Siedentop, H. & Solovej, J.P. Stability and instability of relativistic electrons in classical electromagnetic fields. J Stat Phys 89, 37–59 (1997). https://doi.org/10.1007/BF02770753

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02770753

Key Words

Navigation