Skip to main content
Log in

Rigidity of measures—The high entropy case and non-commuting foliations

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider invariant measures for partially hyperbolic, semisimple, higher rank actions on homogeneous spaces defined by products of real andp-adic Lie groups. In this paper we generalize our earlier work to establish measure rigidity in the high entropy case in that setting. We avoid any additional ergodicity-type assumptions but rely on, and extend the theory of conditional measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Berend,Multi-invariant sets on tori, Transactions of the American Mathematical Society280 (1983), 509–532.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. Berend,Multi-invariant sets on compact abelian groups, Transactions of the American Mathematical Society286 (1984), 505–535.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Borel and G. Prasad,Values of isotropic quadratic forms at S-integral points, Compositio Mathematica83 (1992), 347–372.

    MATH  MathSciNet  Google Scholar 

  4. N. Bourbaki,Lie groups and Lie algebras, Chapters 1–3, inElements of Mathematics, Springer-Verlag, Berlin, 1998. Translated from the French, reprint of the 1989 English translation.

    Google Scholar 

  5. S. G. Dani and J. Smillie,Uniform distribution of horocycle orbits for Fuchsian groups, Duke Mathematical Journal51 (1984), 185–194.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Einsiedler and A. Katok,Invariant measures on G/Γ for split simple Lie-groups G, Communications on Pure and Applied Mathematics56 (2003), 1184–1221.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Einsiedler, A. Katok, and E. Lindenstrauss,Invariant measures and the set of exceptions to Littlewood's conjecture, Annals of Mathematics (2), to appear.

  8. M. Einsiedler and E. Lindenstrauss,Rigidity properties of ℤ d on tori and solenoids, Electronic Research Announcements of the American Mathematical Society9 (2003), 99–110.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Einsiedler and E. Lindenstrauss,Joining of semisimple actions on locally homogeneous spaces, preprint.

  10. J. Feldman,A generalization of a result of R. Lyons about measures on [0, 1), Israel Journal of Mathematics81 (1993), 281–287.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Furstenberg,Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Mathematical Systems Theory1 (1967), 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  12. H. Furstenberg,The unique ergodicity of the horocycle flow, inRecent Advances in Topological Dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund), Lecture Notes in Mathematics318, Springer, Berlin, 1973, pp. 95–115.

    Chapter  Google Scholar 

  13. B. Host,Nombres normaux, entropie, translations, Israel Journal of Mathematics91 (1995), 419–428.

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Hungerford,Algebra, Holt, Rinehart and Winston, New York, 1974.

    MATH  Google Scholar 

  15. A. S. Johnson,Measures on the circle invariant under multiplication by a non-lacunary subsemigroup of the integers, Israel Journal of Mathematics77 (1992), 211–240.

    MATH  MathSciNet  Google Scholar 

  16. B. Kalinin and A. Katok,Invariant measures for actions of higher rank abelian groups, inSmooth Ergodic Theory and its Applications (Seattle, WA, 1999), American Mathematical Society, Providence, RI, 2001, pp. 593–637.

    Google Scholar 

  17. B. Kalinin and R. Spatzier,Measurable rigidity for higher rank abelian actions, Ergodic Theory and Dynamical Systems25 (2005), 175–200.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Katok and R. Spatzier,Invariant measures for higher-rank hyperbolic abelian actions, Ergodic Theory and Dynamical Systems16 (1996), 751–778.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Katok and R. Spatzier,Corrections to: “Invariant measures for higher-rank hyperbolic abelian actions” [Ergodic Theory Dynam. Systems 16 (1996), no. 4, 751–778], Ergodic Theory and Dynamical Systems18 (1998), 503–507.

    Article  MathSciNet  Google Scholar 

  20. F. Ledrappier and L.-S. Young,The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Annals of Mathematics (2)122 (1985), 540–574.

    Article  MathSciNet  Google Scholar 

  21. E. Lindenstrauss,Invariant measures and arithmetic quantum unique ergodicity, Annals of Mathematics (2), to appear.

  22. E. Lindenstrauss and B. Weiss,On sets invariant under the action of the diagonal group, Ergodic Theory and Dynamical Systems21 (2001), 1481–1500.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Lyons,On measures simultaneously 2- and 3-invariant, Israel Journal of Mathematics61 (1988), 219–224.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Margulis,Discrete subgroups and ergodic theory, inNumber Theory, Trace Formulas and Discrete Groups (Oslo, 1987), Academic Press, Boston, 1989, pp. 377–398.

    Google Scholar 

  25. G. Margulis, and G. Tomanov,Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Inventiones Mathematicae116 (1994), 347–392.

    Article  MATH  MathSciNet  Google Scholar 

  26. W. Parry,Squaring and cubing the circle—Rudolph's theorem, inErgodic Theory of ℤ d Actions (Warwick, 1993–1994), London Mathematical Society Lecture Note Series, Vol. 228, Cambridge University Press, Cambridge, 1996, pp. 177–183.

    Google Scholar 

  27. M. Ratner,On Raghunathan's measure conjecture, Annals of Mathematics (2)134 (1991), 545–607.

    Article  MathSciNet  Google Scholar 

  28. M. Ratner,Raghunathan's topological conjecture and distributions of unipotent flows, Duke Mathematical Journal63 (1991), 235–280.

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Ratner,Raghunathan's conjectures for SL(2,R), Israel Journal of Mathematics80 (1992), 1–31.

    MATH  MathSciNet  Google Scholar 

  30. M. Ratner,Interactions between ergodic theory, Lie groups, and number theory, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, pp. 157–182.

    Google Scholar 

  31. M. Ratner,Raghunathan's conjectures for Cartesian products of real and p-adic Lie groups, Duke Mathematical Journal77 (1995), 275–382.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Rees,Some ℕ 2 flows, Unpublished manuscript, 1982.

  33. D. J. Rudolph,×2 and ×3 invariant measures and entropy, Ergodic Theory and Dynamical Systems10 (1990), 395–406.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Einsiedler.

Additional information

To Hillel Furstenberg with friendship and admiration

Manfred Einsiedler is partially supported by the NSF Grant DMS 0400587.

Anatole Katok is partially supported by the NSF Grant DMS 0071339.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Einsiedler, M., Katok, A. Rigidity of measures—The high entropy case and non-commuting foliations. Isr. J. Math. 148, 169–238 (2005). https://doi.org/10.1007/BF02775436

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02775436

Keywords

Navigation