Skip to main content
Log in

The Thouless formula for random non-Hermitian Jacobi matrices

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Random non-Hermitian Jacobi matricesJ n of increasing dimensionn are considered. We prove that the normalized eigenvalue counting measure ofJ n converges weakly to a limiting measure μ asn→∞. We also extend to the non-Hermitian case the Thouless formula relating μ and the Lyapunov exponent of the second-order difference equation associated with the sequenceJ n . The measure μ is shown to be log-Hölder continuous. Our proofs make use of (i) the theory of products of random matrices in the form first offered by H. Furstenberg and H. Kesten in 1960 [8], and (ii) some potential theory arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Avron and B. Simon,Almost periodic Schrödinger operators II. The integrated density of states, Duke Mathematical Journal50 (1983), 369–391.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Bougerol and J. Lacroix,Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics., Vol. 8, Birkhäuser, Boston-Basel-Stuttgart, 1985.

    MATH  Google Scholar 

  3. R. Carmona and J. Lacroix,Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990.

    MATH  Google Scholar 

  4. W. Craig and B. Simon,Subharmonicity of the Lyapunov Index, Duke Mathematical Journal50 (1983), 551–560.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Derrida, J. L. Jacobsen and R. Zeitak,Lyapunov exponent and density of states of a one-dimensional non-Hermitian Schrodinger equation, Journal of Statistical Physics98 (2000), 31–55.

    Article  MATH  MathSciNet  Google Scholar 

  6. A. L. Figotin and L. A. Pastur,The positivity of the Lyapunov exponent and the absence of the absolutely continuous spectrum for almost-Mathieu equation, Journal of Mathematical Physics25 (1984), 774–777.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Furstenberg,Noncommuting random products, Transactions of the American Mathematical Society108 (1963), 377–428.

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Furstenberg and H. Kesten,Products of random matrices, Annals of Mathematical Statistics,31 (1960), 457–469.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. C. Gohberg and M. G. Krein,Introduction to the Theory of Linear Nonself-adjoint Operators, American Mathematical Society, Providence, RI, 1969.

    Google Scholar 

  10. I. Ya. Goldsheid and B. A. Khoruzhenko,Eigenvalue curves of asymmetric tridiagonal random matrices, Electronic Journal of Probability5 (2000), Paper 16, 26 pp.

  11. I. Ya. Goldsheid and B. A. Khoruzhenko,Regular spacings of complex eigenvalues in the one-dimensional non-Hermitian Anderson model, Communications in Mathematical Physics,238 (2003), 505–524.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Guivarc'h and, A. Raugi,Frontière de Furstenberg properiétés de contraction et théorèmes de convergence, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete69 (1985), 187–242.

    Article  MATH  MathSciNet  Google Scholar 

  13. N. Hatano and D. R. Nelson,Localization transitions in non-Hermitian quantum mechanics, Physical Review Letters77 (1996), 570–573.

    Article  Google Scholar 

  14. N. Hatano and D. R. Nelson,Vortex pinning and non-Hermitian quantum mechanics, Physical ReviewB56 (1997), 8651–8673.

    Article  Google Scholar 

  15. D. E. Holz, H. Orland and A. Zee,On the remarkable spectrum of a non-Hermitian random matrix model, Journal of Physics. A. Mathematical and General36 (2003), 3385–3400.

    Article  MATH  MathSciNet  Google Scholar 

  16. L. Hörmander,The Analysis of Linear Partial Differential Equations, Vol. I, Springer, Berlin, 1983.

    Google Scholar 

  17. L. Hörmander,Notions of Convexity, Birkhäuser, Boston, 1994.

    MATH  Google Scholar 

  18. V. I. Oseledec,A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Transactions of the Moscow Mathematical Society19 (1968), 197–221.

    MathSciNet  Google Scholar 

  19. L. A. Pastur and A. L. Figotin,Spectra of Random and Almost-periodic Operators, Springer, Berlin-Heidelberg-New York, 1992.

    MATH  Google Scholar 

  20. A. D. Virtser,On products of random matrices and operators (English), Theory of Probability and its Applications24 (1980), 367–377.

    Article  MATH  Google Scholar 

  21. H. Widom,Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of the Toeplitz determinants in the case of nonvanishing index, Operator Theory: Advances and Applications48 (1990), 387–421.

    MathSciNet  Google Scholar 

  22. H. Widom,Eigenvalue distribution for nonselfadjoint Toeplitz matrices, Operator Theory: Advances and Applications71 (1994), 1–8.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Ya. Goldsheid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsheid, I.Y., Khoruzhenko, B.A. The Thouless formula for random non-Hermitian Jacobi matrices. Isr. J. Math. 148, 331–346 (2005). https://doi.org/10.1007/BF02775442

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02775442

Keywords

Navigation