Skip to main content
Log in

On directional entropy functions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given aZ 2-process, the measure theoretic directional entropy function,h(\(\vec v\)% MathType!End!2!1!), is defined on\(S^1 = \left\{ {\vec v:\left\| {\vec v} \right\| = 1} \right\} \subset R^2 \)% MathType!End!2!1!. We relate the directional entropy of aZ 2-process to itsR 2 suspension. We find a sufficient condition for the continuity of directional entropy function. In particular, this shows that the directional entropy is continuous for aZ 2-action generated by a cellular automaton; this finally answers a question of Milnor [Mil]. We show that the unit vectors whose directional entropy is zero form aG δ subset ofS 1. We study examples to investigate some properties of directional entropy functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Abramov and V. A. Rohlin,The entropy of a skew product of measure preserving transformations, American Mathematical Society Translations, Series2 (1965), 255–265.

    Google Scholar 

  2. M. Boyle and D. Lind,Expansive Subdynamics, Transactions of the American Mathematical Society349 (1997), 55–102.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. A. Hedlund,Endomorphisms and automorphisms of the shift dynamical system, Mathematical Systems Theory3 (1969), 320–375.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Kaminski and K. K. Park,On the directional entropy for Z 2-actions on a Lebesgue space, preprint.

  5. D. Lind, Personal communication.

  6. J. Milnor,On the entropy geometry of cellular automata, Complex Systems2 (1988), 357–386.

    MATH  MathSciNet  Google Scholar 

  7. J. Milnor,Directional entropies of cellular automaton-maps, NATO Advanced Science Institutes Series F20 (1986), 113–115.

    MathSciNet  Google Scholar 

  8. B. Marcus and S. Newhouse,Measures of maximal entropy for a class of skew products, Lecture Notes in Mathematics729, Springer-Verlag, Berlin, 1979, pp. 105–125.

    Google Scholar 

  9. D. Ornstein and B. Weiss,The Shannon-McMillan-Breiman Theorem for a class of amenable groups, Israel Journal of Mathematics44 (1983), 53–60.

    Article  MATH  MathSciNet  Google Scholar 

  10. D. Ornstein and B. Weiss,Entropy and isomorphism theorem for actions of amenable groups, Journal d’Analyse Mathématique48 (1987), 1–141.

    Article  MATH  MathSciNet  Google Scholar 

  11. K. K. Park,Entropy of a skew product with a Z 2-action, Pacific Journal of Mathematics172 (1995), 227–241.

    Google Scholar 

  12. K. K. Park,Continuity of directional entropy, Osaka Journal of Mathematics31 (1994), 613–628.

    MATH  MathSciNet  Google Scholar 

  13. K. K. Park,A counterexample of the entropy of a skew product, Indagationes Mathematicae, to appear.

  14. A. Rosenthal,Uniform generators for ergodic finite entropy free actions of amenable groups, Probability Theory and Related Fields77 (1988), 147–166.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Sinai,An answer to a question by J.Milnor, Commentarii Mathematici Helvetici60 (1985), 173–178.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Sinai,Topics in Ergodic Theory, Princeton University Press, 1995.

  17. J. P. Thouvenot, Personal communication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research is supported in part by BSRI and KOSEF 95-0701-03-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, K.K. On directional entropy functions. Isr. J. Math. 113, 243–267 (1999). https://doi.org/10.1007/BF02780179

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02780179

Keywords

Navigation