Skip to main content
Log in

Sobolev classes of Banach space-valued functions and quasiconformal mappings

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We give a definition for the class of Sobolev functions from a metric measure space into a Banach space. We give various characterizations of Sobolev classes and study the absolute continuity in measure of Sobolev mappings in the “borderline case”. We show under rather weak assumptions on the source space that quasisymmetric homeomorphisms belong to a Sobolev space of borderline degree; in particular, they are absolutely continuous. This leads to an analytic characterization of quasiconformal mappings between Ahlfors regular Loewner spaces akin to the classical Euclidean situation. As a consequence, we deduce that quasisymmetric maps respect the Cheeger differentials of Lipschitz functions on metric measure spaces with borderline Poincaré inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors,On quasiconformal mappings, J. Analyse Math.31954), 1–58.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Ambrosio,Metric space valued functions of bounded variation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)17 (1990), 439–478.

    MathSciNet  MATH  Google Scholar 

  3. L. Ambrosia and P. Tilli,Selected topics on “Analysis in Metric Spaces”, Appunti dei Corsi Tenuti da Docenti della Scuola, Scuola Normale Superiore, Pisa, 2000, 133 pp.

  4. Z. Balogh and P. Koskela,Quasiconformality, quasisymmetry and removability in Loewner spaces, Duke Math. J.101 (2000), 554–577, with an appendix by J. Väisälä.

    MathSciNet  Google Scholar 

  5. Y. Benjamini and J. Lindenstrauss,Geometric Nonlinear Functional Analysis, Volume 1, Vol. 48 of Colloquium Publications, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  6. F. Bethuel,The approximation problem for Sobolev maps between two manifolds, Acta. Math.167 (1991), 153–206.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Bonk, J. Heinonen and P. Koskela,Uniformizing Gromov hyperbolic spaces, Astérisque270 (2001).

  8. M. Bourdon and H. Pajot,Poincaré inequalities and quasiconformal structure on the boundaries of some hyperbolic buildings, Proc. Amer. Math. Soc.127 (1999), 2315–2324.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Cheeger,Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal.9 (1999), 428–517.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Diestel and J. J. Uhl,Vector Measures, American Mathematical Society, Providence, R.I., 1977, with a foreword by B. J. Pettis, Mathematical Surveys, No. 15.

    MATH  Google Scholar 

  11. H. Federer,Geometric Measure Theory, Vol. 153 ofDie Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1969.

    Google Scholar 

  12. B. Fuglede,Extremal length and functional completion, Acta Math.98 (1957), 171–219.

    Article  MathSciNet  MATH  Google Scholar 

  13. F. W. Gehring,The definitions and exceptional sets for quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I Math.281 (1960), 28pp.

    Google Scholar 

  14. F. W. Gehring,Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc.103 (1962),353–393.

    Article  MathSciNet  MATH  Google Scholar 

  15. F. W. Gehring,The L p -integrability of the partial derivatives of a quasiconformal mapping, Acta Math.130, (1973), 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. W. Gehring,Lower dimensional absolute continuity properties of quasiconformal mappings, Math. Proc. Cambridge Philos. Soc.78 (1975), 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Hajłasz,Sobolev spaces on an arbitrary metric space, Potential Anal.5 (1996), 403–415.

    MathSciNet  MATH  Google Scholar 

  18. P. Hajłasz and P. Koskela,Sobolev met Poincaré Mem. Amer. Math. Soc.145 (2000), 688.

    Google Scholar 

  19. B. Hanson and J. Heinonen,An n-dimensional space that admits a Poincaré inequality but has no manifold points, Proc. Amer. Math. Soc.128 (2000), 3379–3390.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Heinonen,Calculus on Carnot groups, inFall School in Analysis (Jyväskylä, 1994), Vol. 68, Ber. Univ. Jyväskylä Math. Inst., Jyväskylä, 1995, pp. 1–31.

    Google Scholar 

  21. J. Heinonen, and A. Hinkkanen,Quasiconformal maps between compact polyhedra are quasisymmetric, Indiana Univ. Math. J.45 (1996), 997–1019.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Heinonen and P. Koskela,Definitions of quasiconformality, Invent. Math.120 (1995), 61–79.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Heinonen and P. Koskela,From local to global in quasiconformal structures, Proc. Natl. Acad. Sci. U.S.A.93 (1996), 554–556.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Heinonen and P. Koskela,Quasiconformal maps in metric spaces with controlled geometry, Acta Math.181 (1998), 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Heinonen and P. Koskela,A note on Lipschitz functions, upper gradients, and the Poincaré inequality, New Zealand J. Math.28 (1999), 37–42.

    MathSciNet  MATH  Google Scholar 

  26. J. Jost,Generalized Dirichlet forms and harmonic maps, Calc. Var. Partial Differential Equations5 (1997), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Jost, W. Kendall, U Mosco, M. Röckner and K.-T. Sturm,New Directions in Dirichlet Forms, American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  28. A. Korányi and H. M. Reimann,Quasiconformal mappings on the Heisenberg groups, Invent. Math.80 (1985), 309–338.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Koranyi and H. M. Reimann,Foundations for the theory of quasiconformal mappings on the Heisenberg group, Adv. Math.111 (1995), 1–87.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. J. Korevaar and R. M. Schoen,Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom.1 (1993), 561–659.

    MathSciNet  MATH  Google Scholar 

  31. P. Koskela,Removable sets for Sobolev spaces, Ark. Mat.37 (1999), 291–304.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Koskela and P. MacManus,Quasiconformal mappings and Sobolev spaces, Studia Math.131 (1998) 1–17.

    MathSciNet  MATH  Google Scholar 

  33. P. Koskela, N. Shanmugalingam and H. Tuominen,Removable sets for the Poincaré inequality on metric spaces. Indiana Univ. Math. J.49 (2000), 333–352.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Laakso,Ahlfors Q-regular spaces with arbitary Q admitting weak Poincaré inequalities, Geom. Funct. Anal.10 (2000), 111–123.

    Article  MathSciNet  MATH  Google Scholar 

  35. U. Lang, B. Pavlović and V. Schroeder,Extensions of Lipschitz maps into Hadamard spaces, Geom. Funct. Anal.10 (2000), 1527–1553.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Maly and O. Martio,Lusin’s condition (N) and mappings of the class W 1, n, J. Reine Angew. Math.458 (1995), 19–36.

    MathSciNet  MATH  Google Scholar 

  37. G. A. Margulis and G. D. Mostow,The differential of a quasi-conformal mapping of a Carnot-Caratheodory space, Geom. Funct. Anal.5 (1995), 402–433.

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Mattila,Geometry of Sets and Measures in Euclidean Spaces Vol. 44 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  39. G. D. Mostow,Quasiconformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math.34 (1968), 53–104.

    Article  MathSciNet  MATH  Google Scholar 

  40. G. D. Mostow,Strong Rigidity of Locally Symmetric Spaces, Annals of Mathematics Studies, No. 78, Princeton University Press, Princeton, N.J., 1973.

    MATH  Google Scholar 

  41. G. D. Mostow,A remark on quasiconformal mappings on Carnot groups, Michigan Math. J.41 (1994), 31–37.

    Article  MathSciNet  Google Scholar 

  42. P. Pansu,Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2),129 (1989), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Ranjbar-Motlagh,Analysis on metric-measure spaces, Ph.D. thesis, New York University, 1998.

  44. Y. G. Reshetnyak,The (N) condition for spatial mappings of the class W 1n, loc , Sibirsk. Mat. Zh.28 (1987), 149–153.

    MathSciNet  MATH  Google Scholar 

  45. Y. G. Reshetnyak,Sobolev classes of functions with values in a metric space, Sibirsk. Mat. Zh.38 (1997), 657–675.

    MATH  Google Scholar 

  46. S. Semmes,Finding curves on general spaces through quantitative topology, with applications to Sobolev and Poincaré inequalities, Selecta Math.2 (1996), 155–295.

    Article  MathSciNet  MATH  Google Scholar 

  47. N. Shanmugalingam,Harmonic functions on metric spaces, Illinois J. Math., to appear.

  48. N. Shanmugalingam,Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, PhD thesis, University of Michigan, 1999.

  49. N. Shanmugalingam,Newtonian spaces: an extension of Sobolov spaces to metric measure spaces, Rev. Mat. Iberoamericana16 (2000), 243–279.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Troyanov,Approximating Lipschitz mappings and Sobolev mappings between metric spaces, in preparation.

  51. P. Tukia and J. Väisälä,Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math.5 (1980), 97–114.

    MathSciNet  MATH  Google Scholar 

  52. J. T. Tyson,Qusiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Ser. A I Math.23 (1998), 525–528.

    MathSciNet  Google Scholar 

  53. J. T. Tyson,Geometric and analytic applications of a generalized definition of the conformal modulus, PhD thesis, University of Michigan, 1999.

  54. J. T. Tyson,Analytic properties of locally quasisymmetric mappings from Euclidean domains, Indiana Univ. Math. J.49 (2000), 995–1016.

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Väisälä,On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I Math.298 (1961), 1–36.

    Google Scholar 

  56. J. Väisälä,Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Mathematics229, Springer-Verlag, Berlin, 1971.

    MATH  Google Scholar 

  57. J. Väisälä,Quasi-symmetric embeddings in Euclidean spaces, Trans. Amer. Math. Soc.264 (1981), 191–204.

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Väisälä,Questions on quasiconformal maps in space, inQuasiconformal Mappings and Analysis (Ann Arbor, MI, 1995), Springer, New York, 1998, pp. 369–374.

    Chapter  Google Scholar 

  59. S. K. Vodop’yanov and A. V. Greshnov,Analytic properties of quasiconformal mappings on Carnot groups, Siberian Math. J.36 (1995), 1142–1151.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. H. supported by NSF grant DMS9970427. P. K. supported by the Academy of Finland, project 39788. N. S. supported in part by Enterprise Ireland. J. T. T. supported by an NSF Postdoctoral Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinonen, J., Koskela, P., Shanmugalingam, N. et al. Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85, 87–139 (2001). https://doi.org/10.1007/BF02788076

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02788076

Keywords

Navigation