Skip to main content
Log in

Geometry and ergodic theory of non-recurrent elliptic functions

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We explore the class of elliptic functions whose critical points all contained in the Julia set are non-recurrent and whose ω-limit sets form compact subsets of the complex plane. In particular, this class comprises hyperbolic, subhyperbolic and parabolic elliptic maps. Leth be the Hausdorff dimension of the Julia set of such an elliptic functionf. We construct an atomlessh-conformal measurem and show that theh-dimensional Hausdorff measure of the Julia set off vanishes unless the Julia set is equal to the entire complex plane ℂ. Theh-dimensional packing measure is positive and is finite if and only if there are no rationally indifferent periodic points. Furthermore, we prove the existence of a (unique up to a multiplicative constant) σ-finitef-invariant measure μ equivalent tom. The measure μ is shown to be ergodic and conservative, and we identify the set of points whose open neighborhoods all have infinite measure μ. In particular, we show that ∞ is not among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aaronson, M. Denker and M. Urbański,Ergodic theory for Markov fibered systems and parabolic rational maps, Trans. Amer. Math. Soc.337 (1993), 495–548.

    Article  MATH  MathSciNet  Google Scholar 

  2. I. N. Baker, J. Kotus and Y. Lü,Iterates of meromorphic functions I, Ergodic Theory Dynam. Systems11 (1991), 241–248.

    MATH  MathSciNet  Google Scholar 

  3. I. N. Baker, J. Kotus and Y. Lü,Iterates of meromorphic functions III: Preperiodic domains, Ergodic Theory Dynam. Systems11 (1991), 603–618.

    MATH  MathSciNet  Google Scholar 

  4. I. N. Baker, J. Kotus and Y. Lü,Iterates of meromorphic functions IV, Results Math.22 (1992), 651–656.

    MathSciNet  MATH  Google Scholar 

  5. A. F. Beardon,Iteration of Rational Maps, Springer-Verlag, New York, 1991.

    Google Scholar 

  6. W. Bergweiler,Iteration of meromorphic functions, Bull. Amer. Math. Soc.29 (1993), 151–188.

    MATH  MathSciNet  Google Scholar 

  7. R. Bowen,Equilibrium States and the Ergodic Theory for Anosov Diffeomorphisms, Lecture Notes in Math.470, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  8. M. Denker and M. Urbański,On the existence of conformal measures Trans. Amer. Math. Soc.328 (1991), 563–587.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Denker and M. Urbański,On Sullivan's conformal measures for rational maps of the Riemann sphere, Nonlinearity4 (1991), 365–384.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Denker and M. Urbański,Geometric measures for parabolic rational maps, Ergodic Theory Dynam. Systems12 (1992), 53–66.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Denker and M. Urbański,The capacity of parabolic Julia sets, Math. Z.211 (1992), 73–86.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Graczyk, J. Kotus and G. Światek,Non-recurrent meromorphic functions, preprint 2003.

  13. M. de Guzmán,Differentiation of Integrals in ℝ n Lecture Notes in Math.481, Springer-Verlag Berlin, 1975.

    MATH  Google Scholar 

  14. J. Hawkins and L. Koss,Ergodic properties and Julia sets of Weierstrass elliptic functions, Monatsh. Math.137 (2002), 273–301.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Kotus and M. Urbański,Hausdorff dimension and Hausdorff measures of elliptic-functions, Bull. London Math. Soc.35 (2003), 269–275.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Kuratowski,Topology I, PWN, Warsaw, 1968.

    Google Scholar 

  17. R. Mané,The Hausdorff dimension of invariant probabilities of rational maps, inDynamical Systems, Valparaiso 1986, Lecture Notes in Math.1331, Springer-Verlag, Berlin, 1988, pp. 86–117.

    Chapter  Google Scholar 

  18. R. Mané,On a theorem of Fatou, Bol. Soc. Brasil. Mat.24 (1993), 1–11.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Martens,The existence of σ-finite invariant measures, Applications to real one-dimensional dynamics, Front for the Mathematics ArXiv, http://front.math.ucdavis.edu/math.DS/9201300.

  20. R. L. Mauldin and M. Urbański,Dimensions and measures in infinite iterated functions systems, Proc. London Math. Soc.73 (1996), 105–154.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. Milnor,Dynamics in One Complex Variable, Introductory Lectures, Vieweg, Braunschweig, 1999.

    MATH  Google Scholar 

  22. F. Przytycki,Hausdorff dimension of harmonic measure on the boundary of an attractive basin for a holomorphic map, Invent Math.80 (1985), 169–171.

    Article  MathSciNet  Google Scholar 

  23. F. Przytycki,Iterations of holomorphic Collet-Eckmann maps: conformal and invariant measures, Trans. Amer. Math. Soc.350 (1998), 717–742.

    Article  MATH  MathSciNet  Google Scholar 

  24. F. Przytycki and M. Urbański,Fractals in the Plane—The Ergodic Theory Methods, Cambridge Univ. Press, to appear. Available on the web:http://www.math.unt.edu/urbanski.

  25. D. Ruelle,Thermodynamic Formalism, Addison-Wesley, Reading, Mass., 1978.

    MATH  Google Scholar 

  26. M. Urbański,Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems14 (1994), 391–414.

    MathSciNet  MATH  Google Scholar 

  27. M. Urbański,Geometry and ergodic theory of conformal non-recurrent dynamics, Ergodic Theory Dynam. Systems17 (1997), 1449–1476.

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Walters,An Introduction to Ergodic Theory, Springer-Verlag, Berlin, 1982.

    MATH  Google Scholar 

  29. H. Fedevev,Geometric Measure Theory, Springer-Verlag, Berlin, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Kotus.

Additional information

The research of the first author was supported in part by the Foundation for Polish Science, the Polish KBN Grant No 2 PO3A 034 25 and TUW Grant no 503G 112000442200. She also wishes to thank the University of North Texas where this research was conducted.

The research of the second author was supported in part by the NSF Grant DMS 0100078. Both authors were supported in part by the NSF/PAN grant INT-0306004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotus, J., Urbański, M. Geometry and ergodic theory of non-recurrent elliptic functions. J. Anal. Math. 93, 35–102 (2004). https://doi.org/10.1007/BF02789304

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789304

Keywords

Navigation