Skip to main content
Log in

Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We investigate boundedness of the evolutione itH in the sense ofL 2(ℝ3L 2(ℝ3) as well asL 1(ℝ3L (ℝ3) for the non-selfadjoint operator\(\mathcal{H} = \left[ \begin{gathered} - \Delta + \mu - V_1 \\ V_2 \\ \end{gathered} \right. \left. \begin{gathered} V_2 \\ \Delta - \mu + V_1 \\ \end{gathered} \right],\) where μ>0 andV 1, V2 are real-valued decaying potentials. Such operators arise when linearizing a focusing NLS equation around a standing wave, and the aforementioned bounds are needed in the study of nonlinear asymptotic stability of such standing waves. We derive our results under some natural spectral assumptions (corresponding to a ground state soliton of NLS), see A1)–A4) below, but without imposing any restrictions on the edges±μ of the essential spectrum. Our goal is to develop an “axiomatic approach,” which frees the linear theory from any nonlinear context in which it may have arisen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Agm] S. Agmon,Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)2 (1975), 151–218.

    MATH  MathSciNet  Google Scholar 

  • [AvAr] V. I. Arnold and A. Avez,Ergodic Problems of Classical Mechanics, translated from the French by A. Avez. W. A. Benjamin, Inc., New York-Amsterdam, 1968.

    Google Scholar 

  • [Beli1] H. Berestycki and P.-L. Lions,Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal.82 (1983), 313–345.

    MATH  MathSciNet  Google Scholar 

  • [BeLi2] H. Berestycki and P.-L. Lions,Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal.82 (1983), 347–375.

    MATH  MathSciNet  Google Scholar 

  • [BuPe1] V. S. Buslaev, and G. S. Perelman,Scattering for the nonlinear Schrödinger equation: states that are close to a soliton, (Russian) Algebra i Analiz4 (1992), no. 6, 63–102; translation in St. Petersburg Math. J.4 (1993), 1111–1142.

    MATH  MathSciNet  Google Scholar 

  • [BuPe2] V. S. Buslaev, and G. S. Perelman,On the stability of solitary waves for nonlinear Schrödinger equations, inNonlinear evolution equations, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 75–98.

    Google Scholar 

  • [CaLi] T. Cazenave and P.-L. Lions,Orbital stability of standing waves for some nonlinear Schrödinger equations, Comm. Math. Phys.85 (1982), 549–561

    Article  MATH  MathSciNet  Google Scholar 

  • [Co] C. V. Coffman,Uniqueness of positive solutions of Δu— u+u 3 =0 and a variational characterization of other solutions, Arch. Rat. Mech. Anal.46 (1972), 81–95.

    Article  MATH  MathSciNet  Google Scholar 

  • [CoPel] A. Comech and D. Pelinovsky,Purely nonlinear instability of standing waves with minimal energy, Comm. Pure Appl. Math.56 (2003), 1565–1607.

    Article  MATH  MathSciNet  Google Scholar 

  • [Cu] S. Cuccagna,Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math.54 (2001), 1110–1145.

    Article  MATH  MathSciNet  Google Scholar 

  • [CuPe] S. Cuccagna and D. Pelinovsky,Bifurcations from the endpoints of the essential spectrum in the linearized nonlinear Schrödinger problem, J. Math. Phys.46 (2005), 053520, 15 pp.

    Article  MathSciNet  Google Scholar 

  • [CuPeVo] S. Cuccagna, D. Pelinovsky and V. Vougalter,Spectra of positive and negative energies in the linearized NLS problem, Comm. Pure Appl. Math.58 (2005), 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  • [De] S. Denissov, private communication.

  • [ErSc] M. B. Erdoĝan and W. Schlag,Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I. Dynamics of PDE, vol. 1, (2004), 359–379.

    MATH  Google Scholar 

  • [GJLS] F. Gesztesy and C. K. R. T. Jones, Y. Latushkin and M. Stanislavova,A spectral mapping theorem and invariant manifolds for nonlinear Schrödinger equations, Indiana Univ. Math. J.49 (2000), 221–243.

    Article  MATH  MathSciNet  Google Scholar 

  • [Go] M. Goldberg,Dispersive bounds for the three-dimensional Schrödinger equation with almost critical potentials, Geom. Funct. Anal., to appear.

  • [GoSc] M. Goldberg and W. Schlag,Dispersive estimates for Schrödinger operators in dimensions one and three, Comm. Math. Phys.251, (2004), 157–178.

    Article  MATH  MathSciNet  Google Scholar 

  • [Gr] M. Grillakis,Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system.Comm. Pure. Appl. Math. 41 (1988), 747–774.

    Article  MATH  MathSciNet  Google Scholar 

  • [GSSt1] M. Grillakis, J. Shatah and W. Strauss,Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal.74 (1987), 160–197.

    Article  MATH  MathSciNet  Google Scholar 

  • [GSSt2] M. Grillakis, J. Shatah and W. Strauss,Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal.94 (1990), 308–348.

    Article  MATH  MathSciNet  Google Scholar 

  • [HiSi] P. D. Hislop, and I. M. Sigal,Introduction to Spectral theory. With applications to Schrödinger operators Springer-Verlag, New York, 1996.

    MATH  Google Scholar 

  • [JeKa] A. Jensen and T. Kato,Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke Math. J.46 (1979), 583–611.

    Article  MATH  MathSciNet  Google Scholar 

  • [JeNe] A. Jensen, and G. Nenciu,A unified approach to resolvent expansions at thresholds, Rev. Math. Phys.13 (2001), 717–754.

    Article  MATH  MathSciNet  Google Scholar 

  • [JSoS] J.-L. Journé, A. Soffer and C. D. Sogge,Decay estimates for Schrödinger operators, Comm. Pure Appl. Math.44 (1991), 573–604.

    Article  MATH  MathSciNet  Google Scholar 

  • [Kw] M. K. Kwong,Uniqueness of positive solutions of Δuu+u p=0inn, Arch. Rat. Mech. Anal.65 (1989), 243–266.

    MathSciNet  Google Scholar 

  • [MacK] R. S. MacKay,Stability of equilibria of Hamiltonian systems, inNonlinear phenomena and chaos, (Malvern, 1985), Malvern Phys. Ser., Hilger, Bristol, 1986, pp. 254–270.

    Google Scholar 

  • [McLSer] K. McLeod and J. Serrin,Nonlinear Schrödinger equation. Uniqueness of positive solutions of Δu+f(u)=0inn. Arch. Rat. Mech. Anal.99 (1987), 115–145.

    MATH  MathSciNet  Google Scholar 

  • [Mur] M. Murata,Asymptotic expansions in time for solutions of Schrödinger-type equations, J. Funct. Anal.49 (1982), 10–56.

    Article  MATH  MathSciNet  Google Scholar 

  • [Per1] G. Perelman,On the formation of singularities in solutions of the critical nonlinear Schrödinger equation. Ann. Henri Poincaré2 (2001), 605–673.

    Article  MATH  MathSciNet  Google Scholar 

  • [Per2] G. Perelman,Asymptotic Stability of multi-soliton solutions for nonlinear Schrödinger equations, Comm. Partial Differential Equations29 (2004), 1051–1095.

    Article  MATH  MathSciNet  Google Scholar 

  • [Rau] J. Rauch,Local decay of scattering solutions to Schrödinger's equation, Comm. Math. Phys.61 (1978), 149–168.

    Article  MATH  MathSciNet  Google Scholar 

  • [ReSi] M. Reed and B. Simon,Methods of Modern Mathematical Physics. IV, Academic Press, New York-London, 1979.

    Google Scholar 

  • [RoSc] I. Rodnianski and W. Schlag,Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math.155 (2004), 451–513.

    Article  MATH  MathSciNet  Google Scholar 

  • [RoScS1] I. Rodnianski, W. Schlag and A. Soffer,Dispersive analysis of charge transfer models, Comm. Pure Appl. Math.58 (2005), 149–216.

    Article  MATH  MathSciNet  Google Scholar 

  • [RoScS2] I. Rodnianski, W. Schlag and A. Soffer,Asymptotic stability of N-soliton states of NLS, preprint 2003.

  • [Sc1] W. Schlag,Stable manifolds for an orbitally unstable NLS, Annals of Math. to appear.

  • [Sc2] W. Schlag,Dispersive estimates for Schrödinger operators: A survey, Conference Proceedings “Workshop on Aspects of Non-Linear PDE”, IAS Princeton, 2004 to appear.

  • [Sh] J. Shatah,Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys.91 (1983), 313–327.

    Article  MATH  MathSciNet  Google Scholar 

  • [ShSt] J. Shatah and W. Strauss,Instability of nonlinear bound states, Comm. Math. Phys.100 (1985), 173–190.

    Article  MATH  MathSciNet  Google Scholar 

  • [SoW1] A. Soffer and M. Weinstein,Multichannel nonlinear scattering for nonintegrable equations, Comm. Math. Phys. 133 (1990), 119–146.

    Article  MATH  MathSciNet  Google Scholar 

  • [SoW2] A. Soffer and M. Weinstein,Multichannel nonlinear scattering. II. The case of anysotropic potentials and data, J. Diff. Eq.98 (1992), 376–390.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ste] E. Stein,Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.

    MATH  Google Scholar 

  • [St1] W. A. Strauss,Existence of solitary waves in higher dimensions, Comm. Math. Phys.55 (1977), 149–162.

    Article  MATH  MathSciNet  Google Scholar 

  • [St2] W. A. Strauss,Nonlinear Wave Equations, CBMS Regional Conference Series in Mathematics 73, American Mathematical Society, Providence, RI, 1989.

    MATH  Google Scholar 

  • [SuSu] C. Sulem and P.-L. Sulem,The Nonlinear Schrödinger Equation. Self-focusing and Wave Collapse, Springer-Verlag, New York, 1999.

    MATH  Google Scholar 

  • [We1] M. I. Weinstein,Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal.16 (1985), 472–491.

    Article  MATH  MathSciNet  Google Scholar 

  • [We2] M. I. Weinstein,Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math.39 (1986), 51–67.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ya1] K. Yajima,The W k, p -continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan47 (1995), 551–581.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ya2] K. Yajima,Dispersive estimate for Schrödinger equations with threshold resonance and eigenvalue, Comm. Math. Phys.259 (2005), 475–509.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was initiated in June of 2004, while the first author visited Caltech, and he wishes to thank that institution for its hospitality and support. The first author was partially supported by the NSF grant DMS-0303413. The second author was partially supported by a Sloan fellowship and the NSF grant DMS-0300081. The authors thank Avy Soffer for his interest in this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burak Erdoĝan, M., Schlag, W. Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II. J. Anal. Math. 99, 199–248 (2006). https://doi.org/10.1007/BF02789446

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789446

Keywords

Navigation