Skip to main content
Log in

Convergence of mock Fourier series

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

For certain Cantor measures μ on ℝn, it was shown by Jorgensen and Pedersen that there exists an orthonormal basis of exponentialse 2πiγ·x for λεΛ. a discrete subset of ℝn called aspectrum for μ. For anyL 1 functionf, we define coefficientsc γ(f)=∝f(y)e −2πiγiy dμ(y) and form the Mock Fourier series ∑λ∈Λcλ(f)e iλ·x. There is a natural sequence of finite subsets Λn increasing to Λ asn→∞, and we define the partial sums of the Mock Fourier series by\(s_n (f)(x) = \sum\limits_{\lambda \in \Lambda _n } {c_n (f)e^{2\pi i\lambda \cdot x} } .\)

We prove, under mild technical assumptions on μ and Λ, thats n(f) converges uniformly tof for any continuous functionf and obtain the rate of convergence in terms of the modulus of continuity off. We also show, under somewhat stronger hypotheses, almost everywhere convergence forfεL 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [G] M. de Guzmán,Real Variable Methods in Fourier Analysis, North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  • [DJ] D. E. Dutkay and P. E. T. Jorgensen,Iterated function systems, Ruelle operators, and invariant projective measures, Math. Comp. (2006), to appear.

  • [DOS] X. T. Duong E. M. Ouhabaz and A. Sikora,Plancherel type estimates and sharp spectral multipliers. J. Funct. Anal.196 (2002), 443–485.

    Article  MathSciNet  Google Scholar 

  • [HS] N. Huang and R. Strichartz,Sampling theory for functions with fractal spectrum, Experiment. Math.10 (2001), 619–638.

    MATH  MathSciNet  Google Scholar 

  • [JP] P.E.T. Jorgensen and S. Pedersen,Dense analytic subspaces in fractal L 2-spaces, J. Analyse Math.75 (1998), 185–228.

    MathSciNet  Google Scholar 

  • [Ki] J. Kigami,Analysis on Fractals, Cambridge University Press, New York, 2001.

    MATH  Google Scholar 

  • [LW] I. Laba and Y. Wang,On spectral Cantor measures, J. Funct. Anal.193 (2002), 409–420.

    Article  MATH  MathSciNet  Google Scholar 

  • [OSS] R. Oberlin, B. Street and R. StrichartzSampling on the Sierpinski gasket, Experiment. Math.12 (2003), 403–418.

    MATH  MathSciNet  Google Scholar 

  • [O] A. M. Olevskii,Fourier Series with respect to General Orthogonal Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1975.

    MATH  Google Scholar 

  • [St] E. M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.

    MATH  Google Scholar 

  • [S1] R. Strichartz,Remarks on “Dense analytic subspaces in fractal L 2-spaces.”, by P.E.T. Jorgensen and S. Pedersen, J. Analyse Math.75 (1998), 229–231.

    MATH  MathSciNet  Google Scholar 

  • [S2] R. Strichartz,Mock Fourier series and transforms associated with certain Cantor measures, J. Analyse Math.81 (2000), 209–238.

    Article  MATH  MathSciNet  Google Scholar 

  • [S3] R. Strichartz,Laplacians on fractals with spectral gaps have nicer Fourier series, Math. Res. Lett.12 (2005), pp. 269–274.

    MATH  MathSciNet  Google Scholar 

  • [T] T. Tao,On the almost everywhere convergence of wavelet summation methods, Appl. Comput. Harmon. Anal.3 (1996), 384–387.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported in part by the National Science Foundation, Grant DMS-0140194.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strichartz, R.S. Convergence of mock Fourier series. J. Anal. Math. 99, 333–353 (2006). https://doi.org/10.1007/BF02789451

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789451

Keywords

Navigation