Skip to main content
Log in

Function theory for Laplace and Dirac-Hodge Operators in hyperbolic space

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We develop basic properties of solutions to the Dirac-Hodge and Laplace equations in upper half space endowed with the hyperbolic metric. Solutions to the Dirac-Hodge equation are called hypermonogenic functions, while solutions to this version of Laplace's equation are called hyperbolic harmonic functions. We introduce a Borel-Pompeiu formula forC 1 functions and a Green's formula for hyperbolic harmonic functions. Using a Cauchy integral formula, we introduce Hardy spaces of solutions to the Dirac-Hodge equation. We also provide new arguments describing the conformal covariance of hypermonogenic functions and invariance of hyperbolic harmonic functions and introduce intertwining operators for the Dirac-Hodge operator and hyperbolic Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors,Möbius Transformations in Several Dimensions, Ordway Lecture Notes, University of Minnesota, 1981.

  2. L. V. Ahlfors,Möbius transformations in R n expressed through 2×2 matrices of Clifford numbers, Complex Variables5 (1986), 215–224.

    MathSciNet  Google Scholar 

  3. Ö. Akin and H. Leutwiler,On the invariance of the solutions of the Weinstein equation under Möbius transformations, inClassical and Modern Potential Theory and Applications (K. Gowrisankran et al. eds.), Kluwer Dodrecht, 1994, pp. 19–29.

    Google Scholar 

  4. D. Calderbank,Dirac operators and Clifford analysis on manifolds, Max Plank Institute for Mathematics, Bonn, preprint 96-131, 1996.

    Google Scholar 

  5. C. Cao and P. Waterman,Conjugacy invariants of Möbius groups, inQuasiconformal Mappings and Analysis (Ann Arbor, MI, 1995), Springer, New York, 1998, pp. 109–139.

    Google Scholar 

  6. P. Cerejeiras and J. Cnops,Hodge-Dirac operators for hyperbolic space, Complex Variables41 (2000), 267–278.

    MATH  MathSciNet  Google Scholar 

  7. J. Cnops,An Introduction to Dirac Operators on Manifolds, Progress in Mathematical Physics, Birkhäuser, Boston, 2002.

    MATH  Google Scholar 

  8. S.-L. Eriksson-Bique,Möbius transformations and k-hypermonogenic functions, inClifford algebras and potential theory, Univ. Joensuu Dept. Math. Rep. Ser., 7, Univ. Joensuu, Joensuu, 2004, pp. 213–226.

    Google Scholar 

  9. S.-L. Eriksson,Integral formulas for hypermonogenic functions, Bull. Belg. Math. Soc.11 (2004), 705–707.

    MATH  MathSciNet  Google Scholar 

  10. S.-L. Eriksson-Bique,k-hypermonogenic functions, inProgress in Analysis (H. Begehr et al., eds.) World Scientific, New Jersey, 2003, pp. 337–348.

    Google Scholar 

  11. S.-L. Eriksson-Bique and H. Leutwiler,Hypermonogenic functions, inClifford Algebras and their Applications in Mathematical Physics, Volume 2, (J. Ryan and W. Sprößig, eds.), Birkhäuser, Boston, 2000, pp. 287–302.

    Google Scholar 

  12. S.-L. Eriksson and H. Leutwiler,Hypermonogenic functions and their Cauchy-type theorems, inTrends in Mathematics: Advances in Analysis and Geometry, Birkhäuser, Basel, 2003, pp. 1–16.

    Google Scholar 

  13. S.-L. Eriksson and H. Leutwiler,Some integral formulas for hypermonogenic functions, to appear.

  14. G. Gaudry, R. Long and T. Qian,A martingale proof of L 2 -boundedness of Clifford valued singular integrals, Ann. Mat. Pura Appl.165 (1993), 369–394.

    Article  MATH  MathSciNet  Google Scholar 

  15. K. Gowrisankran and D. Singman,Minimal fine limits for a class of potentials, Potential Anal.13 (2000), 103–114.

    Article  MathSciNet  Google Scholar 

  16. M. Habib,Invariance des fonctions α-harmoniques par les transformations de Möbius, Exposition Math.13 (1995), 469–480.

    MATH  MathSciNet  Google Scholar 

  17. L. K. Hua,Starting with the Unit Circle, Springer-Verlag, Heidelberg, 1981.

    MATH  Google Scholar 

  18. A. Huber,On the uniqueness of generalized axially symmetric potentials, Ann. of Math. (2),60 (1954), 351–358.

    Article  MathSciNet  Google Scholar 

  19. V. Iftimie,Fonctions hypercomplexes, Bull. Math. Soc. Sci. Math. R. S. Roumanie9 (1965), 279–332.

    MathSciNet  Google Scholar 

  20. R. S. Krausshar and J. Ryan,Clifford and harmonic analysis on spheres and hyperbolas Revista Matemática Iberoamericana21 (2005), 87–110.

    MATH  MathSciNet  Google Scholar 

  21. R. S. Krausshar, J. Ryan and Q. Yuying,Harmonic, monogenic and hypermonogenic functions on some conformally flat manifolds in R n arising from special arithmetic groups of the Vahlen group, Contemporary Mathematics, Contemporary Mathematics370 (2005), 159–173.

    Google Scholar 

  22. R. S. Krausshar and J. Ryan,Some conformally flat spin manifolds, Dirac operators and automorphic forms, to appear in Journal of Mathematical Analysis and Applications.

  23. H. Leutwiler,Best constants in the Harnack inequality for the Weinstein equation, Aequationes Math.34 (1987), 304–315.

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Leutwiler,Modified Clifford analysis, Complex Variables17 (1992), 153–171.

    MATH  MathSciNet  Google Scholar 

  25. H. Liu, and J. Ryan,Clifford analysis techniques for spherical pde's, J. Fourier Analysis Appl.8 (2002), 535–564.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. McIntosh,Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains, inClifford Algebras in Analysis and Related Topics, (J. Ryan, ed.), CRC Press, Boca Raton, 1996, pp. 33–87.

    Google Scholar 

  27. M. Mitrea,Singular Integrals, Hardy Spaces, and Clifford Wavelets, Lecture Notes in Mathematics, No 1575, Springer-Verlag, Heidelberg, 1994.

    Google Scholar 

  28. M. Mitrea,Generalized Dirac operators on non-smooth manifolds and Maxwell's equations, J. Fourier Analysis Appl.7 (2001), 207–256.

    Article  MATH  MathSciNet  Google Scholar 

  29. I. Porteous,Clifford Algebras and the Classical Groups, Cambridge University Press, cambridge, 1995.

    MATH  Google Scholar 

  30. J. Ryan,Dirac operators on spheres and hyperbolae, Boletín Sociedad Matemática Mexicana.3 (1996), 255–270.

    Google Scholar 

  31. K. Th. Vahlen,Über Bewegungen und Complexe Zahlen, Math. Ann.55 (1902), 585–593.

    Article  MathSciNet  MATH  Google Scholar 

  32. P. Van Lancker,Clifford analysis on the sphere, inClifford Algebras and their Applications in Mathematical Physics (V. Dietrich et al., eds.), Kluwer, Dordrecht, 1998, pp. 201–215.

    Google Scholar 

  33. A. Weinstein,Generalized axially symmetric potential theory, Bull. Amer. Math. Soc.59 (1953), 20–38.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Yuying.

Additional information

Research supported by the National Science Foundation of China (Mathematics Tianyuan Foundation, No A324610) and Hebei Province (105129)

Research supported by Academy of Finland

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuying, Q., Bernstein, S., Sirkka-Liisa et al. Function theory for Laplace and Dirac-Hodge Operators in hyperbolic space. J. Anal. Math. 98, 43–64 (2006). https://doi.org/10.1007/BF02790269

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790269

Keywords

Navigation