Skip to main content
Log in

Spectral deformations of one-dimensional Schrödinger operators

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We provide a complete spectral characterization of a new method of constructing isospectral (in fact, unitary) deformations of general Schrödinger operatorsH=−d 2/dx 2+V in\(H = - d^2 /dx^2 + V in \mathcal{L}^2 (\mathbb{R})\). Our technique is connected to Dirichlet data, that is, the spectrum of the operatorH D onL 2((−∞,x 0)) ⊕L 2((x 0, ∞)) with a Dirichlet boundary condition atx 0. The transformation moves a single eigenvalue ofH D and perhaps flips which side ofx 0 the eigenvalue lives. On the remainder of the spectrum, the transformation is realized by a unitary operator. For cases such asV(x)→∞ as |x|→∞, whereV is uniquely determined by the spectrum ofH and the Dirichlet data, our result implies that the specific Dirichlet data allowed are determined only by the asymptotics asE→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baumgartner,Level comparison theorems, Ann. Phys.168 (1986), 484–526.

    Article  MATH  MathSciNet  Google Scholar 

  2. E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its and V. B. Matveev,Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.

    MATH  Google Scholar 

  3. D. Bolle, F. Gesztesy, H. Grosse, W. Schweiger and B. Simon,Witten index, axial anomaly, and Krein's spectral shift function in supersymmetric quantum mechanics, J. Math. Phys.28 (1987), 1512–1525.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Buys and A. Finkel,The inverse periodic problem for Hill's equation with a finite-gap potential, J. Differential Equations55 (1984), 257–275.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. M. Crum,Associated Sturm-Liouville systems, Quart. J. Math. Oxford (2)6 (1955), 121–127.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Darboux,Sur une proposition relative aux équations linéaires, C. R. Acad. Sci. (Paris)94 (1882), 1456–1459.

    Google Scholar 

  7. P. A. Deift,Applications of a commutation formula, Duke Math. J.45 (1978), 267–310.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Deift and E. Trubowitz,Inverse scattering on the line, Comm. Pure Appl. Math.32 (1979), 121–251.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. S. P. Eastham and H. Kalf,Schrödinger-Type Operators with Continuous Spectra, Pitman, Boston, 1982.

    MATH  Google Scholar 

  10. F. Ehlers and H. Knörrer,An algebro-geometric interpretation of the Bäcklund transformation of the Korteweg-de Vries equation, Comment. Math. Helv.57 (1982), 1–10.

    Article  MATH  MathSciNet  Google Scholar 

  11. N. M. Ercolani and H. Flaschka,The geometry of the Hill equation and of the Neumann system, Philos. Trans. Roy. Soc. London Ser. A315 (1985), 405–422.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Finkel, E. Isaacson and E. Trubowitz,An explicit solution of the inverse problem for Hill's equation, SIAM J. Math. Anal.18 (1987), 46–53.

    Article  MATH  MathSciNet  Google Scholar 

  13. N. E. Firsova,On solution of the Cauchy problem for the Korteweg-de Vries equation with initial data the sum of a periodic and a rapidly decreasing function, Math. USSR Sbornik63 (1989), 257–265.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Flaschka and D. W. McLaughlin,Some comments on Bäcklund transformations, canonical transformations, and the inverse scattering method, Lecture Notes in Math, vol. 515 (R.M. Miura, ed.), Springer, Berlin, 1976, pp. 252–295.

    Chapter  Google Scholar 

  15. C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura,Korteweg-de Vries equation and generalizations, VI. Methods for exact solution, Comm. Pure Appl. Math.27 (1974), 97–133.

    Article  MATH  MathSciNet  Google Scholar 

  16. I. M. Gel'fand and B. M. Levitan,On the determination of a differential equation from its spectral function, Amer. Math. Transl. Ser. 21 (1955), 253–304.

    MathSciNet  MATH  Google Scholar 

  17. F. Gesztesy,On the modified Korteweg-de Vries equation, inDifferential Equations with Applications in Biology, Physics, and Engineering (J.A. Goldstein, F. Kappel and W. Schappacher, eds.), Marcel Dekker, New York, 1991, pp. 139–183.

    Google Scholar 

  18. F. Gesztesy,Quasi-periodic, finite-gap solutions of the modified Korteweg-de Vries equation, inIdeas and Methods in Mathematical Analysis, Stochastics, and Applications (S. Albeverio, J. E. Fenstad, H. Holden and T. Lindstrøm, eds.), Vol. 1, Cambridge Univ. Press, Cambridge, 1992, pp. 428–471.

    Google Scholar 

  19. F. Gesztesy,A complete spectral characterization of the double commutation method J. Funct. Anal.117 (1993), 401–446.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Gesztesy, M. Krishna and G. Teschl,On isospectral sets of Jacobi operators, to appear in Comm. Math. Phys.

  21. F. Gesztesy, R. Nowell and W. Pötz,One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics, to appear in Adv. Differential Equations.

  22. F. Gesztesy, W. Schweiger and B. Simon,Commutation methods applied to the mKdV-equation, Trans. Amer. Math. Soc.324 (1991), 465–525.

    Article  MATH  MathSciNet  Google Scholar 

  23. F. Gesztesy and B. Simon,Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators, Trans. Amer. Math. Soc.348 (1996), 349–373.

    Article  MATH  MathSciNet  Google Scholar 

  24. F. Gesztesy and B. Simon,The xi function, Acta Math.176 (1996), 49–71.

    Article  MATH  MathSciNet  Google Scholar 

  25. F. Gesztesy, B. Simon and G. Teschl,Zeros of the Wronskian and renormalized oscillation theory, Amer. J. Math.118 (1996), 571–594.

    Article  MATH  MathSciNet  Google Scholar 

  26. F. Gesztesy and R. Svirsky(m)KdV-solitons on the background of quasi-periodic finite-gap solutions, Mem. Amer. Math. Soc.118 (1995), no. 563.

    MathSciNet  Google Scholar 

  27. F. Gesztesy and G. Teschl,On the double commutation method, Proc. Amer. Math. Soc.124 (1996), 1831–1840.

    Article  MATH  MathSciNet  Google Scholar 

  28. F. Gesztesy and G. Teschl,Commutation methods for Jacobi operators, J. Differential Equations128 (1996), 252–299.

    Article  MATH  MathSciNet  Google Scholar 

  29. F. Gesztesy and R. Weikard,Spectral deformations and soliton equations, inDifferential Equations with Applications in Mathematical Physics (W. F. Ames, E. M. Harrell and J. V. Herod, eds.), Academic Press, Boston, 1993, pp. 101–139.

    Google Scholar 

  30. F. Gesztesy and Z. Zhao,On critical and subcritical Sturm-Liouville operators, J. Funct. Anal.98 (1991), 311–345.

    Article  MATH  MathSciNet  Google Scholar 

  31. H. Grosse and A. Martin,Particle Physics and the Schrödinger Equation, Cambridge University Press, Cambridge, to appear.

  32. K. Iwasaki,Inverse problem for Sturm-Liouville and Hill's equations, Ann. Mat. Pure Appl. (4)149 (1987), 185–206.

    Article  MATH  MathSciNet  Google Scholar 

  33. C. G. J. Jacobi,Zur Theorie der Variationsrechnung und der Differentialgleichungen, J. Reine Angew. Math.17 (1837), 68–82.

    MATH  Google Scholar 

  34. J. Kay and H. E. Moses,Reflectionless transmission through dielectrics and scattering potentials, J. Appl. Phys.27 (1956), 1503–1508.

    Article  MATH  Google Scholar 

  35. E. A. Kuznetsov and A. V. Mikhailov,Stability of stationary waves in nonlinear weakly dispersive media, Soviet Phys. JETP40 (1975), 855–859.

    MathSciNet  Google Scholar 

  36. W. Leighton,On self-adjoint differential equations of second order, J. London Math. Soc.27 (1952), 37–47.

    Article  MATH  MathSciNet  Google Scholar 

  37. B. M. Levitan,Inverse Sturm-Liouville Problems, VNU Science Press, Utrecht, 1987.

    MATH  Google Scholar 

  38. B. M. Levitan,Sturm-Liouville operators on the whole line, with the same discrete spectrum, Math. USSR Sbornik60 (1988), 77–106.

    Article  MATH  MathSciNet  Google Scholar 

  39. V. A. Marchenko,Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986.

    MATH  Google Scholar 

  40. H. P. McKean,Variation on a theme of Jacobi, Comm. Pure Appl. Math.38 (1985), 669–678.

    Article  MATH  MathSciNet  Google Scholar 

  41. H. P. McKean,Geometry of KdV (1): Addition and the unimodular spectral classes, Rev. Mat. Iberoamericana2 (1986), 235–261.

    MATH  MathSciNet  Google Scholar 

  42. H. P. McKean,Geometry of KdV (2): Three examples, J. Statist. Phys.46 (1987), 1115–1143.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. P. McKean,Is there an infinite-dimensional algebraic geometry? Hints from KdV, inTheta Functions (L. Ehrenpreis and R.C. Gunning, eds.), Proc. Symp. Pure Math., Vol. 49, Amer. Math. Soc., Providence, RI, 1989, pp. 27–37.

    Google Scholar 

  44. H. P. McKean,Geometry of KdV (3): Determinants and unimodular isospectral flows, Comm. Pure Appl. Math.45 (1992), 389–415.

    Article  MATH  MathSciNet  Google Scholar 

  45. H. P. McKean and E. Trubowitz,The spectral class of the quantum-mechanical harmonic oscillator, Comm. Math. Phys.82 (1982), 471–495.

    Article  MATH  MathSciNet  Google Scholar 

  46. H. P. McKean and P. van Moerbeke,The spectrum of Hill's equation, Invent. Math.30 (1975), 217–274.

    Article  MATH  MathSciNet  Google Scholar 

  47. S. Novikov, S. V. Manakov, L. P. Pitaevskii and V. E. Zakharov,Theory of Solitons, Consultants Bureau, New York, 1984.

    MATH  Google Scholar 

  48. J. Pöschel and E. Trubowitz,Inverse Spectral Theory, Academic Press, Boston, 1987.

    MATH  Google Scholar 

  49. J. Ralston and E. Trubowitz,Isospectral sets for boundary value problems on the unit interval, Ergodic Theory & Dynamical Systems8 (1988), 301–358.

    Article  MathSciNet  Google Scholar 

  50. U.-W. Schmincke,On Schrödinger's factorization method for Sturm-Liouville operators. Proc. Roy. Soc. Edinburgh Sect. A80 (1978), 67–84.

    MathSciNet  MATH  Google Scholar 

  51. B. Simon,Spectral, analysis of rank one perturbations and applications, inCRM Proc. Lecture Notes, Vol. 8 (J. Feldman, R. Froese and L. Rosen, eds.), Amer. Math. Soc., Providence, RI, 1995, pp. 109–149.

    Google Scholar 

  52. G. Teschl,Oscillation and renormalized oscillation theory for Jacobi operators, to appear in J. Differential Equations.

  53. G. Teschl,Spectral deformations of Jacobi operators, preprint, 1996.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This material is based upon work supported by the National Science Foundation under Grant No. DMS-9401491. The Government has certain rights in this material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gesztesy, F., Simon, B. & Teschl, G. Spectral deformations of one-dimensional Schrödinger operators. J. Anal. Math. 70, 267–324 (1996). https://doi.org/10.1007/BF02820446

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02820446

Keywords

Navigation