Skip to main content
Log in

The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H C Yang

  • Published:
Proceedings of the Indian Academy of Sciences - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper we present a unified and simplified approach to the universal eigenvalue inequalities of Payne—Pólya—Weinberger, Hile—Protter, and Yang. We then generalize these results to inhomogeneous membranes and Schrödinger’s equation with a nonnegative potential. We also show that Yang’s inequality is always better than HileProtter’s (and hence also better than Payne—Pólya—Weinberger’s). In fact, Yang’s weaker inequality (which deserves to be better known),

$$\lambda _{k + 1}< \left( {1 + \frac{4}{n}} \right)\frac{1}{k}\sum\limits_{i = 1}^k {\lambda _i } $$

, is also strictly better than Hile—Protter’s. Finally, we treat Yang’s (and related) inequalities for minimal submanifolds of a sphere and domains contained in a sphere by our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allegretto W, Lower bounds on the number of points in the lower spectrum of elliptic operators,Can. J. Math. 31 (1979) 419–426

    MATH  MathSciNet  Google Scholar 

  2. Anghel N, Extrinsic upper bounds for eigenvalues of Dirac-type operators,Proc. Am. Math. Soc. 117 (1993) 501–509

    Article  MATH  MathSciNet  Google Scholar 

  3. Ashbaugh M S and Benguria R D, A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions,Ann. Math. 135 (1992) 601–628

    Article  MathSciNet  Google Scholar 

  4. Ashbaugh M S and Benguria R D, More bounds on eigenvalue ratios for Dirichlet Laplacians in n dimensions,SIAM J. Math. Anal. 24 (1993) 1622–1651

    Article  MATH  MathSciNet  Google Scholar 

  5. Ashbaugh M S and Benguria R D, Isoperimetric inequalities for eigenvalue ratios, Partial Differential Equations of Elliptic Type, Cortona, 1992,Symposia Mathematica, vol. 35 (eds) A Alvino, E Fabes and G Talenti (Cambridge: Cambridge University Press) (1994) pp. 1–36.

    Google Scholar 

  6. Ashbaugh M S and Benguria R D, Bounds for ratios of the first, second, and third membrane eigenvalues, Nonlinear Problems in Applied Mathematics: in Honor of Ivar Stakgold on his Seventieth Birthday (eds) T S Angell, L Pamela Cook, R E Kleinman and W E Olmstead (Philadelphia: Society for Industrial and Applied Mathematics) (1996) pp. 30–42

    Google Scholar 

  7. Ashbaugh M S and Benguria R D, A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of Sn,Trans. Am. Math. Soc. 353 (2001) 1055–1087

    Article  MATH  MathSciNet  Google Scholar 

  8. Ashbaugh M S and Hermi L, On extending the inequalities of Payne, Pólya, and Weinberger using spherical harmonics (2000) preprint

  9. Brands J J A M, Bounds for the ratios of the first three membrane eigenvalues,Arch. Rational Mech. Anal. 16 (1964) 265–268

    Article  MATH  MathSciNet  Google Scholar 

  10. Chavel I, Eigenvalues in Riemannian Geometry (New York: Academic Press) (1984)

    MATH  Google Scholar 

  11. Chen Z-C, Inequalities for eigenvalues of polyharmonic operator Δ6,Kexue Tongbao (English Ed.) 30 (1985) 869–876

    MathSciNet  Google Scholar 

  12. Cheng S-Y, Eigenfunctions and eigenvalues of Laplacian,Proc. Symp. Pure Math., vol. 27, part 2, Differential Geometry (eds) S S Chern and R Osserman (Providence, Rhode Island: Am. Math. Soc.) (1975) pp. 185–193

    Google Scholar 

  13. Chiti G, A bound for the ratio of the first two eigenvalues of a membrane,SIAM J. Math. Anal. 14 (1983) 1163–1167

    Article  MATH  MathSciNet  Google Scholar 

  14. Harrell E M, Some geometric bounds on eigenvalue gaps,Commun. Part. Differ. Equ. 18 (1993) 179–198

    Article  MATH  MathSciNet  Google Scholar 

  15. Harrell E M and Michel P L, Commutator bounds for eigenvalues, with applications to spectral geometry,Commun. Part. Differ. Equ. 19 (1994) 2037–2055

    Article  MATH  MathSciNet  Google Scholar 

  16. Harrell E M and Michel P L, Commutator bounds for eigenvalues of some differential operators, Evolution Equations, Lecture Notes in Pure and Applied Mathematics, vol. 168 (eds) G Ferreyra, G R Goldstein and F Neubrander (New York: Marcel Dekker) (1995) pp. 235–244

    Google Scholar 

  17. Harrell E M and Stubbe J, On trace identities and universal eigenvalue estimates for some partial differential operators,Trans. Am. Math. Soc. 349 (1997) 1797–1809

    Article  MATH  MathSciNet  Google Scholar 

  18. Hile G N and Protter M H, Inequalities for eigenvalues of the Laplacian,Indiana Univ. Math. J. 29 (1980) 523–538

    Article  MATH  MathSciNet  Google Scholar 

  19. Hile G N and Yeh R Z, Inequalities for eigenvalues of the biharmonic operator,Pac. J. Math. 112 (1984) 115–133

    MATH  MathSciNet  Google Scholar 

  20. Hook GN, Domain-independent upper bounds for eigenvalues of elliptic operators,Trans. Am. Math. Soc. 318 (1990) 615–642

    Article  MATH  MathSciNet  Google Scholar 

  21. Lee J M, The gaps in the spectrum of the Laplace—Beltrami operator,Houston J. Math. 17 (1991) 1–24

    MATH  MathSciNet  Google Scholar 

  22. Leung P-F, On the consecutive eigenvalues of the Laplacian of a compact minimal submanifold in a sphere,J. Austral. Math. Soc. (Series A) 50 (1991) 409–416

    MATH  Google Scholar 

  23. Li P, Eigenvalue estimates on homogeneous manifolds,Comment. Math. Helvetia 55 (1980) 347–363

    Article  MATH  Google Scholar 

  24. Lorch L, Some inequalities for the first positive zeros of Bessel functions,SIAM J. Math. Anal. 24 (1993) 814–823

    Article  MATH  MathSciNet  Google Scholar 

  25. Maeda M, On the eigenvalues of Laplacian,Sci. Rep. Yokohama Nat. Univ. Sect. I 24 (1977) 29–33

    Google Scholar 

  26. Payne L E, Pólya G and Weinberger H F, Sur le quotient de deux fréquences propres consécutives,Comptes Rendus Acad. Sci Paris 241 (1955) 917–919

    MATH  Google Scholar 

  27. Payne L E, Pólya G and Weinberger H F, On the ratio of consecutive eigenvalues,J. Math. Phys. 35 (1956) 289–298

    Google Scholar 

  28. Protter M H, Can one hear the shape of a drum? Revisited,SIAM Rev. 29 (1987) 185–197

    Article  MATH  MathSciNet  Google Scholar 

  29. Protter M H, Universal inequalities for eigenvalues, Maximum Principles and Eigenvalue Problems in Partial Differential Equations,Pitman Research Notes in Mathematics Series vol. 175 (ed) P W Schaefer (Harlow, Essex, United Kingdom: Longman Scientific and Technical) (1988) pp. 111–120

    Google Scholar 

  30. Protter M H, Upper bounds for eigenvalues of elliptic operators, Partial Differential Equations and Applications, Collected Papers in Honor of Carlo Pucci,Lecture Notes in Pure and Applied Mathematics, vol. 177 (eds) P Marcellini, G Talenti and E Vesentini (New York: Marcel Dekker) (1996) pp. 271–277

    Google Scholar 

  31. Qian C-L and Chen Z-C, Estimates of eigenvalues for uniformly elliptic operator of second order,Acta Math. Appl. Sinica (English Ser.) 10 (1994) 349–355

    Article  MATH  MathSciNet  Google Scholar 

  32. Thompson C J, On the ratio of consecutive eigenvalues in n-dimensions,Stud, Appl. Math. 48 (1969) 281–283

    MATH  Google Scholar 

  33. Yang H C, Estimates of the difference between consecutive eigenvalues (1995) preprint (revision of International Centre for Theoretical Physics preprint IC/91/60, Trieste, Italy, April 1991)

  34. Yang P C and Yau S-T, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7 (1980) 55–63

    MATH  MathSciNet  Google Scholar 

  35. Yu Q-H, On the first and second eigenvalues of Schrödinger operator,Chinese Ann. Math. (Ser. B) 14 (1993) 85–92

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashbaugh, M.S. The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H C Yang. Proc. Indian Acad. Sci. (Math. Sci.) 112, 3–30 (2002). https://doi.org/10.1007/BF02829638

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02829638

Keywords

Navigation