Skip to main content
Log in

Mixing properties of the generalized T, T-1-process

  • Published:
Journal d’Analyse Mathematique Aims and scope

Abstract

Consider a general random walk on ℤd together with an i.i.d. random coloring of ℤd. TheT, T -1-process is the one where time is indexed by ℤ, and at each unit of time we see the step taken by the walk together with the color of the newly arrived at location. S. Kalikow proved that ifd = 1 and the random walk is simple, then this process is not Bernoulli. We generalize his result by proving that it is not Bernoulli ind = 2, Bernoulli but not Weak Bernoulli ind = 3 and 4, and Weak Bernoulli ind ≥ 5. These properties are related to the intersection behavior of the past and the future of simple random walk. We obtain similar results for general random walks on ℤd, leading to an almost complete classification. For example, ind = 1, if a step of sizex has probability proportional to l/|x|α (x ⊋ 0), then theT, T -1-process is not Bernoulli when α ≥2, Bernoulli but not Weak Bernoulli when 3/2 ≤α < 2, and Weak Bernoulli when 1 < α < 3/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Benjamini and H. Kesten,Distinguishing sceneries by observing the scenery along a random walk path, J. Analyse Math.69 (1996), 97–135.

    MATH  MathSciNet  Google Scholar 

  2. H. C. P. Berbee,Random Walks with Stationary Increments and Renewal Theory, Math. Centre Tracts112, Center for Mathematics and Computer Science, Amsterdam, 1979.

    Google Scholar 

  3. N. H. Bingham, C. M. Goldie and J. L. Teugels,Regular Variation, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1987.

    Google Scholar 

  4. R. Bradley,Basic properties of strong mixing conditions, inDependence in Probability and Statistics (E. Eberlein and M. Taqqu, eds.), BirkhÄuser, Boston, 1986, pp. 165–192.

    Google Scholar 

  5. I. P. Comfeld, S. V. Fomin and Ya. G. Sinai,Ergodic Theory, Springer-Verlag, New York, 1982.

    Google Scholar 

  6. R. M. Dudley,Random walk on Abelian groups, Proc. Am. Math. Soc.13 (1962), 447–450.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Durrett,Probability: Theory and Examples (2nd ed.), Wadsworth Publ. Co., Duxbury Press, Belmont(CA), 1996.

    Google Scholar 

  8. W. Feller,An Introduction to Probability Theory and its Applications, Volume 2 (2nd ed.), Wiley, New York, 1971.

    MATH  Google Scholar 

  9. N. A. Friedman and D. S. Ornstein,On isomorphism of weak Bernoulli transformations, Adv. Math.5(1971), 365–394.

    Article  MathSciNet  Google Scholar 

  10. H. -O. Georgii,Mixing properties of induced random transformations, Ergodic Theory Dynam. Systems, to appear.

  11. D. R. Grey,Persistent random walks may have arbitrarily large tails, Adv. Appl. Probab.21 (1989), 229–230.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. S. Griffin, N. C. Jain and W. E. Pruitt,Approximate local limit theorems for laws outside domains of attraction, Ann. Probab.12 (1984), 45–63.

    Article  MATH  MathSciNet  Google Scholar 

  13. F. den Hollander,Mixing properties for random walk in random scenery, Ann. Probab.16 (1988), 1788–1802.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. D. Howard,Orthogonality of measures induced by random walks with scenery, Combin. Probab. Comput.5 (1996), 247–256.

    Article  MATH  MathSciNet  Google Scholar 

  15. C.D. Howard,Detecting defects in periodic scenery by random walks on ℤ, Random Structures Algoriths8 (1996), 59–74.

    Article  MATH  MathSciNet  Google Scholar 

  16. C. D. Howard,The orthogonality of measures induced by random walk with scenery, Ph.D. Thesis, Courant Institute of Mathematical Sciences, New York, 1995.

    Google Scholar 

  17. S. Kalikow,T, T -1 transformation is not loosely Bernoulli, Ann. Math.115 (1982), 393–409.

    Article  MathSciNet  Google Scholar 

  18. H. Kesten,Detecting a single defect in a scenery by observing the scenery along a random walk path. Festschrift in honour ofK. ItÔ, Springer, Japan, to appear.

  19. J. Kiefer and J. Wolfowitz,On the characteristics of the general queneing process with applications to random walk, Ann. Math. Statist.27 (1956), 147–161.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. C. Kieffer,A direct proof that VWBprocesses are closed in the d-metric, Israel J. Math.41 (1982), 154–160.

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Lawler,Intersections of Random Walks, BirkhÄuser, Boston, 1991.

    Google Scholar 

  22. G. Lawler,A note on the Green’s function for random walk in four dimensions, Duke Mathematics Preprint 94–03, unpublished.

  23. J.-F. Le Gall,Propriétés d’intersection des marches aléatoires. 1. Convergence vers le temps local d’intersection, Commun. Math. Phys.104 (1986), 471–507.

    Article  MATH  Google Scholar 

  24. J.-F. Le Gall,Propriétés d’intersection des marches aléatoires. 2. Elude des cas critiques. Commun. Math. Phys.104 (1986), 509–528.

    Article  MATH  Google Scholar 

  25. J.-F. Le Gall and J. Rosen,The range of stable random walks, Ann. Probab.19 (1991), 650–705.

    Article  MATH  MathSciNet  Google Scholar 

  26. I. Meilijson,Mixing properties of a class of skew-products, Israel J. Math.19(1974), 266–270.

    Article  MathSciNet  Google Scholar 

  27. D. S. Ornstein,Factors of Bernoulli shifts are Bernoulli shifts. Adv. Math.5(1971), 349–364.

    Article  MathSciNet  Google Scholar 

  28. D. S. Ornstein,An example of a Kolmogorov automorphism that is not a Bernoulli shift, Adv. Math.10 (1973), 49–62.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. S. Ornstein,Ergodic Theory, Randomness and Dynamical Systems, Yale University Press, New Haven, 1974.

    MATH  Google Scholar 

  30. D. S. Ornstein and P. Shields,An uncountable family of K-aulomorphisms, Adv. Math.10 (1973), 63–88.

    Article  MATH  MathSciNet  Google Scholar 

  31. D.S. Ornstein and B. Weiss,Finitely determined implies very weak Bernoulli, Israel J. Math.17 (1974). 94–104.

    Article  MATH  MathSciNet  Google Scholar 

  32. D. S. Ornstein and B. Weiss,Every transformation is bilaterally deterministic, Israel J. Math.24(1975), 154–158.

    Article  MathSciNet  Google Scholar 

  33. W. E. Pruitt,General one-sided laws of the iterated logarithm, Ann. Probab.9 (1981), 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  34. L. A. Shepp,Recurrent random walks may take arbitrarily large steps, Bull. Am. Math. Soc.70(1964), 540–542.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Shields,Weak and very weak Bernoulli partitions, Monatsh. Math.84 (1977), 133–142.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Smorodinsky,A partition on a Bernoulli shift which is not weakly Bernoulli, Math. Systems Theory5(1971), 201–203.

    Article  MATH  MathSciNet  Google Scholar 

  37. F. Spitzer,Principles of Random Walk (2nd ed.), Springer, New York, 1976.

    MATH  Google Scholar 

  38. P. Walters,An Introduction to Ergodic Theory, Springer, New York, 1975.

    Google Scholar 

  39. J. A. Williamson,Random walks and Riesz kernels, Pacific J. Math.25 (1968), 393–415.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank den Hollander.

Additional information

Research partially carried out while a guest of the Department of Mathematics, Chalmers University of Technology, Sweden in January 1996.

Research supported by grants from the Swedish Natural Science Research Council and from the Royal Swedish Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

den Hollander, F., Steif, J.E. Mixing properties of the generalized T, T-1-process. J. Anal. Math. 72, 165–202 (1997). https://doi.org/10.1007/BF02843158

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02843158

Keywords

Navigation