Skip to main content
Log in

Polynomial representation growth and the congruence subgroup problem

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let Γ be anS-arithmetic group in a semisimple group. We show that if Γ has the congruence subgroup property then the number of isomorphism classes of irreducible complexn-dimensional characters of Γ is polynomially bounded. In characteristic zero, the converse is also true. We conjecture that the converse also holds in positive characteristic, and we prove some partial results in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [BLMM02] H. Bass, A. Lubotzky, A. R. Magid and S. Mozes,The proalgebraic completion of rigid groups. Geometriae Dedicata95 (2002), 19–58.

    Article  MathSciNet  MATH  Google Scholar 

  • [CR91] C. W. Curtis and I. Reiner,Methods of Representation Theory. Vol. I. Wiley, New York, 1981.

    Google Scholar 

  • [DdSMS99] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Sega.Analytic Pro-p Groups, second edn., Cambridge Studies in Advanced Mathematics, Vol. 61, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  • [Erd41] P. Erdös,On some asymptotic formulas in the theory of the “factorisation numerorum”, Annals of Mathematics42 (1941), 989–993.

    Article  MathSciNet  Google Scholar 

  • [Hum72] J. E. Humphreys,Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1972.

    MATH  Google Scholar 

  • [JZ03] A. Jalkin-Zapirain,The zeta function of representation of pro-p groups, preprint, 2003.

  • [KL90] P. Keidman and M. Liebeck,The Subgroup Structure of the Finite Classical Groups, London Mathematical Society Lecture Note Series, Vol. 129, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  • [Lan93] S. Lang,Algebra, third edn., Addison-Wesley, Reading, MA, 1993.

    MATH  Google Scholar 

  • [LL] M. Larsen and A. Lubotzky,Normal subgroup growth of linear groups: The (G2, F4, E8)-Theorem, inAlgebraic Groups and Arithmetic (Mumbai 2001) (S. G. Dani and G. Prasad, eds.), Tata Institute of Fundamental Research Studies in Mathematics, Narosa Publishing House, New Delhi, 2004, pp. 441–468.

    Google Scholar 

  • [LM85] A. Lubotzky and A. R. Magid,Varieties of representations of finitely generated groups. Memoirs of the American Mathematical Society58 (1985), no. 336, xi+117.

    MathSciNet  Google Scholar 

  • [LS94] A. Lubotzky and A. Shalev,On some A-analytic pro-p groups, Israel Journal of Mathematics85 (1994) 307–337.

    Article  MathSciNet  MATH  Google Scholar 

  • [LS03] A. Lubotzky and D. Segal,Subgroup Growth, Progress in Mathematics, Vol. 212, Birkhäuser Verlag, Basel, 2003.

    MATH  Google Scholar 

  • [Lub91] A. Lubotzky,Lattices in rank one Lie groups over local fields, Geometric and Functional Analysis (GAFA)1 (1991), 406–431.

    MathSciNet  Google Scholar 

  • [Lub95] A. Lubotzky,Subgroup growth and congruence subgroups, Inventiones Mathematicae119 (1995), 267–295.

    Article  MathSciNet  MATH  Google Scholar 

  • [Mar91] G. A. Margulis,Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 17, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  • [PR93] V. P. Platonov and A. S. Rapinchuk,Abstract properties of S-arithmetic groups and the congruence problem, Russian Academy of Sciences. Izvestiya. Mathematics40 (1993), 455–476.

    Article  MathSciNet  Google Scholar 

  • [PR94] V. Platonov and A. Rapinchuk,Algebraic Groups and Number Theory, Pure and Applied Mathematics, Vol. 139, Academic Press, Boston, MA, 1994.

    Book  MATH  Google Scholar 

  • [PR96] G. Prasad and A. S. Rapinchuk,Computation of the metaplectic kernel, Publications Mathématiques de l’Institut des Hautes Études Scientifiques84 (1996), 91–187.

    Article  MathSciNet  MATH  Google Scholar 

  • [Pra77] G. Prasad,Strong approximation for semi-simple groups over function fields, Annals of Mathematics105 (1977), 553–572.

    Article  MathSciNet  Google Scholar 

  • [Rag76] M. S. Raghunathan,On the congruence subgroup problem, Publications Mathématiques de l’Institut des Hautes Études Scientifiques46 (1976). 107–161.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ros02] M. Rosen,Number Theory in Function Fields, Graduate Texts in Mathematics, Vol. 210, Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  • [Seg99] Y. Segev,On finite homomorphic images of the multiplicative group of a division algebra, Annals of Mathematics149 (1999), 219–251.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ser70] J.-P. Serre,Le problème des groupes de congruence pour SL 2, Annals of Mathematics92 (1970), 489–527.

    Article  MathSciNet  Google Scholar 

  • [Ser92] J.-P. Serre,Lie Algebras and Lie Groups, second edn., Lecture Notes in Mathematics, Vol. 1500, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  • [Ven88] T. N. Venkataramana,On superrigidity and arithmeticity of lattices in semisimple groups over local fields of arbitrary characteristic, Inventiones Mathematicae92 (1988), 255–306.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Lubotzky.

Additional information

Dedicated to Andy Magid on the occasion of his sixtieth birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubotzky, A., Martin, B. Polynomial representation growth and the congruence subgroup problem. Isr. J. Math. 144, 293–316 (2004). https://doi.org/10.1007/BF02916715

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02916715

Keywords

Navigation