Skip to main content
Log in

Sphere packings give an explicit bound for the Besicovitch Covering Theorem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We show that the number of disjointed families needed in the Besicovitch Covering Theorem equals the number of unit spheres that can be packed into a ball of radius five, with one at the center, and get estimates on this number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman, P., and Erdös, P. Geometrical extrema suggested by a lemma of Besicovitch.Amer. Math. Monthly 58, 306–314 (1951).

    Article  MATH  MathSciNet  Google Scholar 

  2. Besicovitch, A. S. A general form of the covering principle and relative differentiation of additive functions.Proc. Cambridge Phil. Soc. 41, 103–110 (1945).

    MATH  MathSciNet  Google Scholar 

  3. Brakke, K. A. The Surface Evolver.Experimental Mathematics 1, 141–165 (1992).

    MATH  MathSciNet  Google Scholar 

  4. Conway, J., and Sloane, N. J. A.Sphere Packings, Lattices and Groups. Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  5. Erdös, P., Godsil, C., Krantz, S. G., and Parsons, T. D. Intersection graphs for families of balls in ℝN.Eur. J. Combinatorics 9, 501–506 (1988).

    MATH  Google Scholar 

  6. Federer, H.Geometric Measure Theory. Springer-Verlag, Berlin, 1969.

    MATH  Google Scholar 

  7. Füredi, Z., and Loeb, P. On the best constant for the Besicovitch covering theorem. Preprint, 1992.

  8. Hardin, R. H., Sloane, N. J. A., and Smith, W. D.Spherical Codes. Unpublished manuscript.

  9. Kabatyanskii, G. A., and Levenshtein, V. I. Bounds for packings on a sphere and in space.Problems of Information Transmission 95, 148–158 (1974).

    Google Scholar 

  10. Krantz, S. G., and Parsons, T. D. Antisocial subcoverings of self-centered coverings.Am. Math. Monthly 93, 45–48 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  11. Levenshtein, V. I. On bounds for packings inn-dimensional euclidean space.Soviet Math. Doklady 20, 417–421 (1979).

    Google Scholar 

  12. Loeb, P. On the Besicovitch covering theorem.SUT J. Math. (Tokyo) 25, 51–55 (1989).

    MATH  MathSciNet  Google Scholar 

  13. Rankin, R. A. The closest packing of spherical caps inn dimensions.Proc. Glasgow Math. Assoc. 2, 139–144 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  14. Reifenberg, E. R. A problem on circles.Math. Gazette 32, 290–292 (1948).

    Article  MATH  MathSciNet  Google Scholar 

  15. Robinson, R. M. Arrangement of 24 points on a sphere.Math. Ann. 144, 17–48 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  16. Sidel’nikov, V. M. New bounds for densest packings of spheres inn-dimensional euclidean space.Mat. Sbornik 95, 148–158 (1974).

    MathSciNet  Google Scholar 

  17. Smith, W. D. Studies in computational geometry motivated by mesh generation. Ph.D. thesis, Princeton University, September 1988.

  18. Sullivan, J. M. A crystalline approximation theorem for hypersurfaces. Ph.D. thesis, Princeton University, September 1990. Also available as Research Report GCG 22 from the Geometry Center, 1300 South Second Street 500, Minneapolis, MN 55454.

  19. Wolfram, S.Mathematica: A System for Doing Mathematics by Computer, Second edition. Addison-Wesley, Redwood City, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, J.M. Sphere packings give an explicit bound for the Besicovitch Covering Theorem. J Geom Anal 4, 219–231 (1994). https://doi.org/10.1007/BF02921548

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921548

Math Subject Classification

Key Words and Phrases

Navigation