Skip to main content
Log in

Quasiregular maps on Carnot groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper we initiate the study of quasiregular maps in a sub-Riemannian geometry of general Carnot groups. We suggest an analytic definition for quasiregularity and then show that nonconstant quasiregular maps are open and discrete maps on Carnot groups which are two-step nilpotent and of Heisenberg type; we further establish, under the same assumption, that the branch set of a nonconstant quasiregular map has Haar measure zero and, consequently, that quasiregular maps are almost everywhere differentiable in the sense of Pansu. Our method is that of nonlinear potential theory. We have aimed at an exposition accessible to readers of varied background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bojarski, B., and Iwaniec, T. Analytical foundations of the theory of quasiconformal mappings in Rn.Ann. Acad. Sci. Fenn. Ser. A. I. Math. 8, 257–324 (1983).

    MathSciNet  MATH  Google Scholar 

  2. Bombieri, E., and Giusti, E. Harnack’s inequality for elliptic differential equations on minimal surfaces.Invent. Math. 15, 24–46(1972).

    Article  MathSciNet  MATH  Google Scholar 

  3. Capogna, L., Danielli, D., and Garofalo, N. An embedding theorem and the Harnack inequality for nonlinear subelliptic equations.Comm. in PDE 18, 1765–1794 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  4. Chow, W. L. Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung.Math. Ann. 117, 98–105 (1939).

    Article  MathSciNet  Google Scholar 

  5. Corwin, L., and Greenleaf, F. P.Representations of nilpotent Lie groups and their applications, Part 1: Basic theory and examples. Cambridge studies in advanced mathematics, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  6. Cowling, M., Dooley, A. H., Korányi, A., and Ricci, F.H-type groups and Iwasawa decompositions.Adv. in Math. 87, 1–41 (1991).

    Article  MATH  Google Scholar 

  7. Eremenko, A., and Lewis, J. L. Uniform limits of certain A-harmonis functions with applications to quasiregular mappings.Ann. Acad. Sci. Fenn. Ser. A.I. Math. 16, 361–375 (1991).

    MathSciNet  Google Scholar 

  8. Folland, G. B. Subelliptic estimates and function spaces on nilpotent Lie groups.Ark. Mat. 13, 161–207 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  9. Folland, G. B., and Stein, E. M.Hardy spaces on homogeneous groups. Princeton University Press, Princeton, NJ, 1982.

    MATH  Google Scholar 

  10. Gol’dshtein, V. M., and Vodop’yanov, S. K. Quasiconformal mappings and spaces of functions with generalized derivatives.Sibirsk. Mat. Z. 17, 515–531 (1976).

    MathSciNet  Google Scholar 

  11. Greub, W. H.Multilinear Algebra. Die Grundlehren der mathematischen Wissenschaften, Band 136, Springer-Verlag, Berlin, 1967.

    Google Scholar 

  12. Hamenstädt, U. Some regularity theorems for Carnot-Carathéodory metrics.J. Diff. Geom. 32, 819–850 (1990).

    MATH  Google Scholar 

  13. Hansen, H., and Hueber, H. The Dirichlet problem for sublaplacians on nilpotent Lie groups—geometric criteria for regularity.Math. Ann. 276, 537–547 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  14. Heinonen, J. A capacity estimate on Carnot groups.Bull. Sci. Math. 119, 473–484 (1995).

    MathSciNet  Google Scholar 

  15. Heinonen, J., and Koskela, P. Definitions of quasiconformality.Invent. Math. 120, 61–79 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  16. Heinonen, J., Kilpeläinen, T., and Martio, O.Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs, Clarendon Press, Oxford, 1993.

    Google Scholar 

  17. Holopainen, I. Nonlinear potential theory and quasiregular mappings on Riemannian manifolds.Ann. Acad. Sci. Fenn. Ser. AI Math. Diss. 74, 1–45 (1990).

    Google Scholar 

  18. Holopainen, I. Positive solutions of quasilinear elliptic equations on Riemannian manifolds.Proc. London Math. Soc. 65, 651–672 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  19. Holopainen, I., and Rickman, S. A Picard type theorem for quasiregular mappings of Rn into n-manifolds with many ends.Rev. Mat. Iberoamericana 8, 131–148 (1992).

    MathSciNet  MATH  Google Scholar 

  20. Holopainen, I., and Rickman, S. Quasiregular mappings of the Heisenberg group.Math. Ann. 294, 625–643 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  21. Hueber, H. Wiener’s criterion in potential theory with applications to nilpotent Lie groups.Math. Z. 190, 527–542 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  22. Iwaniec, T., and Martin, G. Quasiregular mappings in even dimensions.Acta Math. 170, 29–81 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  23. Jerison, D. The Poincaré inequality for vector fields satisfying Hörmander’s condition.Duke Math. J. 53, 503–523 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaplan, A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms.Trans. Amer. Math. Soc. 258, 147–153 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaplan, A. Lie groups of Heisenberg type.Conference on differential geometry on homogeneous spaces (Turin, 1983), Rend. Sem. Mat. Univ. Politec. Torino, special issue, 117–130 (1983).

  26. Korányi, A. Geometric properties of Heisenberg-type groups.Adv. in Math. 56, 28–38 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  27. Korányi, A., and Reimann, H. M. Quasiconformal mappings on the Heisenberg group.Invent. Math. 80, 309–338 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  28. Korányi, A., and Reimann, H. M. Foundations for the theory of quasiconformal mappings on the Heisenberg group.Adv. in Math. 111, 1–87 (1995).

    Article  MATH  Google Scholar 

  29. Lewis, J. L. Picard’s theorem and Rickman’s theorem by way of Harnack’s inequality.Proc. Amer. Math. Soc. 122, 199–206(1994).

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, G. Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications.Rev. Mat. Iberoamericana 8, 367–439 (1992).

    MathSciNet  MATH  Google Scholar 

  31. Lu, G. The sharp Poincaré inequality for free vector fields: An endpoint result.Rev. Mat. Iberoamericana 10, 453–466 (1994).

    MathSciNet  MATH  Google Scholar 

  32. Martio, O., and Ziemer, W. P. Lusin’s condition (N) and mappings with non-negative Jacobians.Michigan Math. J. 39, 495–508 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  33. Mostow, G. D.Strong rigidity of locally symmetric spaces. Princeton University Press, Princeton, NJ, 1973.

    MATH  Google Scholar 

  34. Mostow, G. D. A remark on quasiconformal mappings on Carnot groups.Michigan Math. J. 41, 31–37 (1994).

    Article  MathSciNet  Google Scholar 

  35. Pansu, P. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.Ann. Math. 129, 1–60 (1989).

    Article  MathSciNet  Google Scholar 

  36. Pansu, P. Dimension conforme et sphère à l’infini des variétés à courbure négative.Ann. Acad. Sci. Fenn. Ser. A.I. Math. 14, 177–212(1989).

    MathSciNet  MATH  Google Scholar 

  37. Reimann, H. M. An estimate for pseudoconformal capacities on the sphere.Ann. Acad. Sci. Fenn. Ser. A.I. Math. 14, 315–324 (1989).

    MathSciNet  MATH  Google Scholar 

  38. Reshetnyak, Yu. G. Space mappings with bounded distortion.Sibirsk. Mat. Z. 8, 629–659 (1967).

    MathSciNet  MATH  Google Scholar 

  39. Reshetnyak, Yu. G.Space mappings with bounded distortion. Translation of Mathematical Monographs 73, American Mathematical Society, Providence, RI, 1989.

    MATH  Google Scholar 

  40. Rickman, S. The analogue of Picard’s theorem for quasiregular mappings in dimension three.Acta Math. 154, 195–242 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  41. Rickman, S.Quasiregular mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete 26, Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  42. Strichartz, R. S. Sub-Riemannian Geometry.J. Diff. Geom. 24, 221–263 (1986).

    MathSciNet  MATH  Google Scholar 

  43. Tang, P. Quasiconformal homeomorphisms on CR 3-manifolds with symmetries.Math. Z. 219, 49–69 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  44. Titas, C. J., and Young, G. S. The extension of interiority, with some applications.Trans. Amer. Math. Soc. 103, 329–340 (1962).

    Article  MathSciNet  Google Scholar 

  45. Vuorinen, M. (Ed.).Quasiconformal space mappings; a collection of surveys. Lecture Notes in Math. 1508, Springer-Verlag, New York, 1992.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Seppo Rickman on his sixtieth birthday

J.H. was partially supported by NSF, the Academy of Finland, and the A. P. Sloan Foundation. I.H. was partially supported by the EU HCM contract no. CHRX-CT92-0071.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinonen, J., Holopainen, I. Quasiregular maps on Carnot groups. J Geom Anal 7, 109–148 (1997). https://doi.org/10.1007/BF02921707

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921707

Math Subject Classification

Key Words and Phrases

Navigation