Skip to main content
Log in

Mean curvature flow through singularities for surfaces of rotation

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study generalized “viscosity” solutions of the mean curvature evolution which were introduced by Chen, Giga, and Goto and by Evans and Spruck. We devote much of our attention to solutions whose initial value is a compact, smooth, rotationally symmetric hypersurface given by rotating a graph around an axis. Our main result is the regularity of the solution except at isolated points in spacetime and estimates on the number of such points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschuler, S. J. Singularities of the curve shrinking flow for space curves.Journal of Differential Geometry 34(2), 491–514 (1991).

    MathSciNet  MATH  Google Scholar 

  2. Altschuler, S. J., Angenent, S. B., and Giga, Y. Generalized motion by mean curvature for surfaces of rotation.Advanced Studies in Pure Mathematics, to appear; also Hokkaido University Preprint #118 (1991).

  3. Altschuler, S. J., and Grayson, M. Shortening space curves and flow through singularities.Journal of Differential Geometry 35, 283–298 (1992).

    MathSciNet  MATH  Google Scholar 

  4. Angenent, S. B. The zeroset a a solution of a parabolic equation.Journal für die reine und angewandte Mathematik 390, 79–96 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  5. Angenent, S.B. On the formation of singularities in the curve shortening problem.Journal of Differential Geometry 33, 601–633 (1991).

    MathSciNet  MATH  Google Scholar 

  6. Angenent, S. B. Parabolic equations for curves on surfaces-part 2.Annals of Mathematics 133, 171–215 (1991).

    Article  MathSciNet  Google Scholar 

  7. Angenent, S. B. Solutions of the 1-D porous medium equation are determined by their free boundary.Journal of the London Math. Soc. 42, 339–353 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  8. Angenent, S. B. Shrinking doughnuts. To appear in theProceedings of the Conference on Nonlinear Parabolic PDE, Gregynog-Wales, August 1989.

  9. Brakke, K. A.The Motion of a Surface by Its Mean Curvature. Math. Notes. Princeton University Press, Princeton, NJ, 1978.

    Google Scholar 

  10. Chen, X.-Y. Private communication, 1990.

  11. Chen, X.-Y., and Matano, H. Convergence, asymptotic periodicity, and finite point blow-up in one dimensional semilinear heat equations.Journal of Differential Equations 78, 160–190 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, Y.-G., Giga, Y., and Goto, S. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations.Journal of Differential Geometry 33, 749–786 (1991); announcement in:Proc. Japan Acad. Ser. A 65 207–210 (1989).

    MathSciNet  MATH  Google Scholar 

  13. Chen, Y.-G., Giga, Y., and Goto, S. Analysis toward snow crystal growth.Proceedings of International Symposium on Functional Analysis and Related Topics, ed. S. Koshi, pp. 43–57. World Scientific, Singapore, 1991.

    Google Scholar 

  14. Crandall, M. G., Ishii, H., and Lions, P. L. User’s guide to viscosity solutions of second order partial differential equations. Preprint.

  15. DeGiorgi, E. Some conjectures on flow by mean curvature. Preprint.

  16. Dziuk, G., and Kawohl, B. On rotationally symmetric mean curvature flow.J. of Diff. Equations 93, 142–149 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  17. Ecker, K., and Huisken, G. Mean curvature for entire graphs.Annals of Mathematics 130, 453–471 (1989).

    Article  MathSciNet  Google Scholar 

  18. Ecker, K., and Huisken, G. Interior estimates for hypersurfaces moving by mean curvature.Inventiones Mathematicae 105, 547–569 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  19. Evans, L. C., Soner, H. M., and Souganidis, P. E. Phase transitions and generalized mean curvature flow equations. To appear inComm. Pure Appl. Math.

  20. Evans, L. C., and Spruck, J. Motion of level sets by mean curvature I.Journal of Differential Geometry 33, 635–681 (1991).

    MathSciNet  MATH  Google Scholar 

  21. Evans, L. C., and Spruck, J. Motion of level sets by mean curvature II.Trans. Amer. Math. Soc. 330, 321–332 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  22. Evans, L. C., and Spruck, J. Motion of level sets by mean curvature III.J. Geom. Anal. 2, 121–150 (1992).

    MathSciNet  MATH  Google Scholar 

  23. Gage, M., and Hamilton, R. S. The heat equation shrinking convex plane curves.Journal of Differential Geometry 23, 69–96 (1986).

    MathSciNet  MATH  Google Scholar 

  24. Giga, Y., and Goto, S. Motion of hypersurfaces and geometric equations.J. Math. Soc. Japan 44, 99–111 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  25. Giga, Y., and Goto, S.On the Evolution of Phase Boundaries, eds. M. Gurtin and G. McFadden, IMA Volumes in Mathematics and Its Applications, Vol. 43, pp. 51–66. Springer-Verlag, New York, 1992.

    Google Scholar 

  26. Giga, Y., Goto, S., and Ishii, H. Global existence of weak solutions for interface equations coupled with diffusion equations.SIAM J. Math. Anal. 23, 821–835 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  27. Giga, Y., Goto, S., Ishii, H., and Sato, M.-H. Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains.Indiana University Math. Journal 40, 443–470 (1990).

    Article  MathSciNet  Google Scholar 

  28. Giga, Y., and Kohn, R. Asymptotically self-similar blow-up of semilinear heat equations.Comm. Pure and Appl. Math. 38, 297–319 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  29. Galaktionov, Victor A., and Posashkov, Sergei A. On some monotonicity in time properties for a quasilinear parabolic equation with source. InDegenerate Diffusions, eds. W.-M. Ni, L. A. Peletier, and J. L. Vazquez, IMA Volumes in Mathematics and Its Applications, Vol. 47, pp. 77–93. Springer-Verlag, New York, 1993.

    Google Scholar 

  30. Grayson, M. The heat equation shrinks embedded plane curves to round points.Journal of Differential Geometry 26, 285–314 (1987).

    MathSciNet  MATH  Google Scholar 

  31. Grayson, M. A short note on the evolution of a surface by its mean curvature.Duke Math. Journal 58, 555–558 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  32. Huisken, G. Flow by mean curvature of convex surfaces into spheres.Journal of Differential Geometry 20, 237–266 (1984).

    MathSciNet  MATH  Google Scholar 

  33. Huisken, G. Asymptotic behaviour for singularities of the mean curvature flow.Journal of Differential Geometry 31, 285–299 (1991).

    MathSciNet  Google Scholar 

  34. Huisken, G. Local and global behaviour of hypersurfaces moving by mean curvature. C. M. A. Australian National University Preprint CMA-R34-90, 1990.

  35. Ilmanen, T. Generalized flow of sets by mean curvature on a manifold. Preprint.

  36. Ilmanen, T. The level-set flow on a manifold. Preprint.

  37. Korevaar, N. An easy proof of the interior gradient bound for solutions to the prescribed mean curvature equation.Nonlinear functional analysis and its applications, Proc. Symp. Pure Math. 45, part 2, 81–89 (1986).

    MathSciNet  Google Scholar 

  38. Ladyzhenskaya, O. A., Solonnikov, V., and Ural’ceva, N. Linear and quasilinear equations of parabolic type.Translations of Mathematical Monographs,23 A. M. S. (1968).

  39. Matano, H. Nonincrease of the lapnumber for a solution of a one—dimensional semi—linear parabolic equation.J. Fac. Sci. Univ. Tokyo, Sec. IA,29, 401–441 (1982).

    MathSciNet  MATH  Google Scholar 

  40. Ohta, T., Jasnow, D., and Kawasaki, K. Universal scaling in the motion of random interfaces.Physics Review Letters 49, 1223–1226 (1982).

    Article  Google Scholar 

  41. Osher, S., and Sethian, J. A. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations.J. Comp. Phys. 79, 12–49 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  42. Sethian, J. A. Curvature and evolution of fronts.Comm. Math. Physics 101, 12–49 (1985).

    Article  MathSciNet  Google Scholar 

  43. Sethian, J. A. Numerical for propagating interfaces: Hamilton-Jacobi equations and conservation laws.Journal of Differential Geometry 31, 131–161 (1990).

    MathSciNet  MATH  Google Scholar 

  44. Soner, H. M. Motion of a set by the curvature of its boundary. To appear inJournal of Differential Equations.

  45. Soner, H. M., and Souganidis, P. E. Uniqueness and singularities of cylindrically symmetric surfaces moving by mean curvature. Preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altschuler, S., Angenent, S.B. & Giga, Y. Mean curvature flow through singularities for surfaces of rotation. J Geom Anal 5, 293–358 (1995). https://doi.org/10.1007/BF02921800

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921800

Math Subject Classification

Navigation