Skip to main content
Log in

The entropy formula for linear heat equation

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We derive the entropy formula for the linear heat equation on general Riemannian manifolds and prove that it is monotone non-increasing on manifolds with nonnegative Ricci curvature. As applications, we study the relation between the value of entropy and the volume of balls of various scales. The results are simpler version, without Ricci flow, of Perelman ’s recent results on volume non-collapsing for Ricci flow on compact manifolds. We also prove that if the entropy for the heat kernel achieves its maximum value zero at some positive time, on any complete Riamannian manifold with nonnegative Ricci curvature, if and only if the manifold is isometric to the Euclidean space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakry, D., Concordet, D., and Ledoux, M. Optimal heat kernel bounds under logarithmic Sobolev inequalities,ESAIM Probab. Statist.,1, 391–407, (1995/97).

    Article  MathSciNet  Google Scholar 

  2. Beckner, W. Geometric asymptotics and the logarithmic Sobolev inequality,Forum Math.,11, 105–137, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  3. Beckner, W. and Pearson, M. On sharp Sobolev and the logarithmic Sobolev inequality,Bull. London Math. Soc.,30, 80–84, (1998).

    Article  MathSciNet  Google Scholar 

  4. Cao, H.D. and Ni, L. Matrix Li-Yau-Hamilton estimates for the heat equation on Kaehler manifolds, submitted, arXiv: math.DG/0211283.

  5. Cao, H.D., Chen, B-L., and Zhu, X-P. Ricci flow on compact Kahler manifolds of positive bisectional curvature, preprint.

  6. Cheng, S.-Y., Li, P., and Yau, S.-T. On the upper estimate of heat kernel of a complete Riemannian manifold,Am. J. Math.,103, 1021–1063, (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. Chow, B. Interpolating between Li-Yau’s and Hamilton’s Harnack inequalities on a surface,J. Partial Differential Equations,11(2), 137–140, (1998).

    MathSciNet  MATH  Google Scholar 

  8. Chow, B., Chu, S-C., Lu, P., and Ni, L. Notes on Perelman’s papers on Ricci flow.

  9. Davies, E. Explicit constants for Gaussian upper bounds on heat kernels,Am. J. Math.,109, 319–334, (1987).

    Article  MATH  Google Scholar 

  10. Ecker, K. Logarithmic Sobolev inequalities on submanifolds of Euclidean spaces,J. Reine Angew. Mat.,552, 105–118, (2002).

    MathSciNet  Google Scholar 

  11. Gross, L. Logarithmic Sobolev inequalities,Am. J. Math.,97(4), 1061–1083, (1975).

    Article  Google Scholar 

  12. Hamilton, R. The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237–262,Contemp. Math.,71, Am. Math. Soc., Providence, RI, (1988).

    Google Scholar 

  13. Hamilton, R. A matrix Harnack estimate for the heat equation,Comm. Anal. Geom.,1, 113–126, (1993).

    MathSciNet  MATH  Google Scholar 

  14. Kleiner, B. and Lott, J. Notes on Perelman’s paper.

  15. Ledoux, M. On manifolds with non-negative Ricci curvature and Sobolev inequalities,Comm. Anal. Geom.,7, 347–353, (1999).

    MathSciNet  MATH  Google Scholar 

  16. Li, P. On the Sobolev constant andp-spectrum of a compact Riemannian manifold,Ann. Scient. Éc. Norm. Sup.,13, 451–469, (1980).

    MATH  Google Scholar 

  17. Li, P. Large time behavior of the heat equation on complete manifolds with nonnegative Ricci curvature,Ann. of Math.,124(1), 1–21, (1986).

    Article  MathSciNet  Google Scholar 

  18. Li, P. and Yau, S.-T. On the parabolic kernel of the Schrödinger operator,Acta Math.,156, 139–168, (1986).

    Article  MathSciNet  Google Scholar 

  19. Ni, L. Poisson equation and Hermitian-Einstein metrics on holomorphic vector bundles over complete noncompact Kahler manifolds,Indiana Univ. Math. J.,51(3), 679–704, (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. Perelman, G. The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/ 0211159.

  21. Perelman, G. Informal talks and discussions.

  22. Rothaus, O.S. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities,J. Funct. Anal.,64, 296–313, (1985).

    Article  MathSciNet  MATH  Google Scholar 

  23. Stam, A.J. Some inequalities satisfied by the quantities of informations of Fisher and Shannon,Inform, and Control,2, 101–112, (1959).

    Article  MathSciNet  MATH  Google Scholar 

  24. Sesum, N., Tian, G., and Wang, X. Notes on Perelman’s paper on entropy formula for Ricci flow and its geometric applications.

  25. Varadhan, R.S. On the behavior of the fundamental solution of the heat equation with variable coefficients,Comm. Pure Applied Math.,20, 431–455, (1967).

    Article  MathSciNet  MATH  Google Scholar 

  26. Weissler, F.B. Logarithmic Sobolev inequalities for the heat-diffusion semi-group,Trans. AMS.,237, 255–269, (1978).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ni.

Additional information

Communicated by Peter Li

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, L. The entropy formula for linear heat equation. J Geom Anal 14, 87–100 (2004). https://doi.org/10.1007/BF02921867

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02921867

Math Subject Classifications

Key Words and Phrases

Navigation