Skip to main content
Log in

Dynamics of a two parameter family of plane birational maps: Maximal entropy

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We mix combinatorial with complex methods to study the dynamics of a real two parameter family of plane birational maps. Specifically, we consider the action of the maps on the Picard group of an appropriate compactification of the complex plane, on the homology groups of a forward invariant real subset of this compactification, and on a Markov partition of the real plane determined by the critical set. For the range of parameters considered, the three actions are equivalent. This allows us to construct a measure of maximal entropy on the real nonwandering set, and it allows us to show that all wandering points are attracted to infinity in a well-defined fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. From Yang-Baxter equations to dynamical zeta functions for birational transformations, Statistical physics on the eve of the 21st century, 436–490,Ser. Adv. Statist. Mech. 14, World Sci. Publishing, River Edge, NJ, (1999).

    Google Scholar 

  2. Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Rational dynamical zeta functions for birational transformations,Physica A264, 264–293, chao-dyn/9807014, (1999).

    Article  Google Scholar 

  3. Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Topological entropy and complexity for discrete dynamical systems,Phys. Lett. A 262, 44–49, chao-dyn/9806026, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  4. Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., and Maillard, J.-M. Growth complexity spectrum of some discrete dynamical systems,Phys. D 130(1–2), 27–42, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  5. Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., and Maillard, J.-M. Real topological entropy versus metric entropy for birational measure-preserving transformations,Phys. D 144(3–4), 387–433, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  6. Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Real Arnold complexity versus real topological entropy for birational transformations,J. Phys. A 33(8), 1465–1501, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  7. Abarenkova, N., Anglès d’Auriac, J.-C., Boukraa, S., Hassani, S., and Maillard, J.-M. Topological entropy and Arnold complexity for two-dimensional mappings,Phys. Lett. A 262(1), 44–49, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bedford, E. and Diller, J. Real and complex dynamics of a family of birational maps of the plane: The golden mean subshift,Amer. J. Math. 127(3), 595–646, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. Bedford, E. and Diller, J. Energy and invariant measures for birational surface maps,Duke Math. J. 128(2), 331–368, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. Bernardo, M., Truong, T., and Rollet, G. The discrete Painlevé I equations: Transcendental integrability and asymptotic solutions,J. Phys. A 34(15), 3215–3252, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  11. Bellon, M. and Viallet, C. Algebraic entropy,Commun. Math. Phys. 204, 425–437, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  12. Boukraa, S., Hassani, S., and Maillard, J.-M. New integrable cases of a Cremona transformation: A finite-order orbits analysis,Phys. A 240, 586–621, (1997).

    Article  Google Scholar 

  13. Boukraa, S., Hassani, S., and Maillard, J.-M. Product of involutions and fixed points,Alg. Rev. Nucl. Sci. 2, 1–16, (1998).

    Google Scholar 

  14. Boukraa, S., Maillard, J.-M., and Rollet, G. Almost integrable mappings,Int. J. Mod. Phys. B8, 137–174, (1994).

    MathSciNet  Google Scholar 

  15. Diller, J. and Favre, C. Dynamics of bimeromorphic maps of surfaces,Amer. J. Math. 123, 1135–1169,(2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. Dujardin, R. Laminar currents and birational dynamics,Duke Math. J. 131(2), 219–247, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. Fornæss, J.-E. and Sibony, N. Complex dynamics in higher dimension, II, Modern Methods in Complex Analysis,Ann. of Math. Stud. 137, Princeton University Press, 135–182, (1995).

  18. Griffiths, P. and Harris,J. Principles of Algebraic Geometry, Wiley Classics Library, (1994).

  19. Guedj, V. Ergodic properties of rational mappings with large topological degree,Ann. of Math. Stud. 161(3), 1589–1607, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. Lind, D. and Marcus, B.An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, (1995).

    MATH  Google Scholar 

  21. Robinson, C. Dynamical systems. Stability, symbolic dynamics, and chaos, 2nd ed.,Stud. Adv. Math. CRC Press, Boca Raton, FL, (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by John Eric Fornæss

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedford, E., Diller, J. Dynamics of a two parameter family of plane birational maps: Maximal entropy. J Geom Anal 16, 409–430 (2006). https://doi.org/10.1007/BF02922060

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922060

Math Subject Classifications

Key Words and Phrases

Navigation