Skip to main content
Log in

A degenerate Newton’s map in two complex variables: Linking with currents

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Little is known about the global structure of the basins of attraction of Newton’s method in two or more complex variables. We make the first steps by focusing on the specific Newton mapping to solve for the common roots of P(x, y) = x(1−x) and Q(x, y) = y2 + Bxy − y.

There are invariant circles S0 and S1 within the lines x = 0 and x = 1 which are superattracting in the x-direction and hyperbolically repelling within the vertical line. We show that S0 and S1 have local super-stable manifolds, which when pulled back under iterates of N form global super-stable spaces W0 and W1. By blowing-up the points of indeterminacy p and q of N and all of their inverse images under N we prove that W0 and W1 are real-analytic varieties.

We define linking between closed 1-cycles in Wi (i = 0, 1) and an appropriate closed 2 current providing a homomorphism lk: H1 (Wi, ℤ) → ℚ. If Wi intersects the critical value locus of N, this homomorphism has dense image, proving that H1 (Wi, ℤ) is infinitely generated. Using the Mayer-Vietoris exact sequence and an algebraic trick, we show that the same is true for the closures of the basins of the roots\(\overline {W(r_i )} \)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramov, L. M. and Rohlin, V. A. Entropy of a skew product of mappings with invariant measure,Vestnik Leningrad. Univ. 17(7), 5–13, (1962).

    MathSciNet  Google Scholar 

  2. Bedford, E., Lyubich, M., and Smillie, J. Polynomial diffeomorphisms of ℂ2, IV, The measure of maximal entropy and laminar currents,Invent. Math. 112(1), 77–125, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bedford, E. and Smillie, J. Polynomial diffeomorphisms of C2: Currents, equilibrium measure and hyperbolicity,Invent. Math. 103(1), 69–99, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bedford, E. and Smillie, J. Polynomial diffeomorphisms of C2, II, Stable manifolds and recurrence,J. Amer. Math. Soc. 4(4), 657–679, (1991).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bedford, E. and Smillie, J. Polynomial diffeomorphisms of ℂ2, III, Ergodicity, exponents and entropy of the equilibrium measure,Math. Ann. 294(3), 395–420, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bedford, E. and Smillie, J. Polynomial diffeomorphisms of ℂ2, V, Critical points and Lyapunov exponents,J. Geom. Anal. 8(3), 349–383, (1998).

    MathSciNet  MATH  Google Scholar 

  7. Bedford, E. and Smillie, J. Polynomial diffeomorphisms of ℂ2, VI, Connectivity ofJ, Ann. of Math. (2) 148(2), 695–735, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. Bedford, E. and Smillie, J. External rays in the dynamics of polynomial automorphisms of ℂ2, in Complex Geometric Analysis in Pohang (1997),Contemp. Math. 222, 41–79, Amer. Math. Soc., Providence, RI, (1999).

    Google Scholar 

  9. Bedford, E. and Smillie, J. Polynomial diffeomorphisms of ℂ2, VII, Hyperbolicity and external rays,Ann. Sci. École Norm. Sup. (4) 32(4), 455–497, (1999).

    MathSciNet  MATH  Google Scholar 

  10. Bonifant, A. M. and Dabija, M. Self-maps of ℙ2 with invariant elliptic curves, in Complex Manifolds and Hyperbolic Geometry (Guanajuato, 2001),Contemp. Math. 311, 1–25. Amer. Math. Soc., Providence, RI, (2002).

    Google Scholar 

  11. Bonifant, A.M. and Fornæss, J.E. Growth of degree for iterates of rational maps in several variables,Indiana Univ. Math. J. 49(2), 751–778, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  12. Bott, R. and Tu, L. W. Differential forms in algebraic topology, vol. 82 ofGraduate Texts in Mathematics, Springer-Verlag, New York, 1982.

    Google Scholar 

  13. Bredon, G.E. Topology and geometry, vol. 139 ofGraduate Texts in Mathematics, Springer-Verlag, New York, 1993.

    Google Scholar 

  14. Briend, J.-Y. Exposants de Liapounof et points périodiques d’endomorphismes holomorphes de ℂℙk, Ph. D. thesis, Toulouse, (1997).

  15. Briend, J.-Y. and Duval, J. Deux caractérisations de la mesure d’équilibre d’un endomorphisme de Pk(C),Publ. Math. Inst. Hautes Études Sci. 93, 145–159, (2001).

    MathSciNet  MATH  Google Scholar 

  16. Brolin, H. Invariant sets under iteration of rational functions,Ark. Mat. 6, 103–144, (1965).

    Article  MathSciNet  MATH  Google Scholar 

  17. Demailly, J.-P. Courants positifs et théorie de l’intersection,Gaz. Math. 53, 131–159, (1992).

    MathSciNet  MATH  Google Scholar 

  18. Devaney, R. and Nitecki, Z. Shift automorphisms in the Hénon mapping,Comm. Math. Phys. 67(2), 137–146, (1979).

    Article  MathSciNet  MATH  Google Scholar 

  19. Diller, J. Dynamics of birational maps ofP 2,Indiana Univ. Math. J. 45(3), 721–772, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. Dinh, T.-C. and Sibony, N. Dynamique des applications d’allure polynomiale,J. Math. Pures Appl. (9) 82(4), 367–423, (2003).

    MathSciNet  MATH  Google Scholar 

  21. Dinh, T.-C. and Sibony, N. Dynamics of regular birational maps in ℙk,J. Funct. Anal. 222(1), 202–216, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  22. Dujardin, R. Hénon-like mappings in ℂ2,Amer. J. Math. 126(2), 439–472, (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. Favre, C. and Jonsson, M. Brolin’s theorem for curves in two complex dimensions,Ann. Inst. Fourier (Grenoble) 53(5), 1461–1501, (2003).

    MathSciNet  MATH  Google Scholar 

  24. Fornæss, J. E. Dynamics in several complex variables, vol. 87 ofCBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, (1996).

  25. Fornæss, J.E. and Sibony, N. Complex dynamics in higher dimension, I,Astérisque 222(5), 201–231, 1994. Complex analytic methods in dynamical systems (Rio de Janeiro), (1992).

    Google Scholar 

  26. Fornæss, J. E. and Sibony, N. Complex dynamics in higher dimensions, in Complex potential theory (Montreal, PQ, 1993), vol. 439 ofNATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 131–186. Kluwer Acad. Publ., Dordrecht, Notes partially written by Estela A. Gavosto, (1994).

    Google Scholar 

  27. Fornæss, J. E. and Sibony, N. Complex dynamics in higher dimension, II, in Modern methods in complex analysis (Princeton, NJ, 1992), vol. 137 ofAnn. of Math. Stud. 135–182. Princeton University Press, Princeton, NJ, (1995).

    Google Scholar 

  28. Griffiths, P. and Harris, J.Principles of Algebraic Geometry, Wiley-Interscience [John Wiley & Sons], New York, Pure and Applied Mathematics, 1978.

    MATH  Google Scholar 

  29. Guedj, V. Dynamics of quadratic polynomial mappings of ℂ2,Michigan Math. J. 52(3), 627–648, (2004).

    Article  MathSciNet  MATH  Google Scholar 

  30. Guedj, V. Ergodic properties of rational mappings with large topological degree,Ann. of Math. (2) 161, 1589–1607, (2005).

    Article  MathSciNet  MATH  Google Scholar 

  31. Hatcher, A.Algebraic Topology, Cambridge University Press, Cambridge, 2002.

    MATH  Google Scholar 

  32. Heinemann, S.-M. Julia sets of skew products in C2,Kyushu J. Math. 52(2), 299–329, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  33. Hubbard, J., Papadopol, P., and Veselov, V. A compactification of Hénon mappings in C2 as dynamical systems,Acta Math. 184(2), 203–270, (2000).

    Article  MathSciNet  MATH  Google Scholar 

  34. Hubbard, J. H. and Oberste-Vorth, R. W. Hénon mappings in the complex domain, I, The global topology of dynamical space,Inst. Hautes Études Sci. Publ. Math. 79, 5–46, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  35. Hubbard, J. H. and Oberste-Vorth, R. W. Hénon mappings in the complex domain, II, Projective and inductive limits of polynomials, in Real and complex dynamical systems (Hillerød, 1993), vol. 464 ofNATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 89–132, Kluwer Acad. Publ., Dordrecht, (1995).

    Google Scholar 

  36. Hubbard, J. H. and Oberste-Vorth, R. W. Linked solenoid mappings and the non-transversality locus invariant,Indiana Univ. Math. J. 50(1), 553–566, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  37. Hubbard, J. H. and Papadopol, P. Newton’s method applied to two quadratic equations in ℂ2 viewed as a global dynamical system, to appear in theMem. Amer. Math. Soc.

  38. Hubbard, J. H. and Papadopol, P. Superattractive fixed points in Cn,Indiana Univ. Math. J. 43(1), 321–365, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  39. Jonsson, M. Dynamics of polynomial skew products on C2,Math. Ann. 314(3), 403–447, (1999).

    Article  MathSciNet  MATH  Google Scholar 

  40. Kantorovič, L. V. On Newton’s method,Trudy Mat. Inst. Steklov. 28, 104–144, (1949).

    MathSciNet  Google Scholar 

  41. Mañé, R., Sad, P., and Sullivan, D. On the dynamics of rational maps,Ann. Sci. École Norm. Sup. (4) 16(2), 193–217, (1983).

    MATH  Google Scholar 

  42. Milnor, J. W.Dynamics in One Complex Variable, Friedr. Vieweg & Sohn, Braunschweig, Introductory lectures, 1999.

    MATH  Google Scholar 

  43. Milnor, J. W.Topology from the Differentiable Viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va, 1965.

    MATH  Google Scholar 

  44. Papadantonakis, K. Fractalasm. A fast, generalized fractal exploration program, http://www.math. cornell.edu/~dynamics/FA/index.html.

  45. Rolfsen, D. Knots and links, vol. 7 ofMathematics Lecture Series, Publish or Perish Inc., Houston, TX, (corrected reprint of the 1976 original), 1990.

    Google Scholar 

  46. Russakovskii, A. and Shiffman, B. Value distribution for sequences of rational mappings and complex dynamics,Indiana Univ. Math. J. 46(3), 897–932, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  47. Sester, O. Hyperbolicité des polynômes fibrés,Bull. Soc. Math. France 127(3), 393–428, (1999).

    MathSciNet  MATH  Google Scholar 

  48. Sibony, N. Dynamique des applications rationnelles de Pk, in Dynamique et géométrie complexes (Lyon, 1997), vol. 8 ofPanor. Synthèses 97–185, Soc. Math. France, Paris, (1999).

    Google Scholar 

  49. Smillie, J. Complex dynamics in several variables, in Flavors of geometry, vol. 31 ofMath. Sci. Res. Inst. Publ. 117–150, Cambridge University Press, Cambridge, (with notes by Gregery T. Buzzard), (1997).

    Google Scholar 

  50. Sumi, H. A correction to the proof of a lemma in Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products,Ergodic Theory Dynam. Systems 21(4), 1275–1276, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  51. Sumi, H. Dynamics of sub-hyperbolic and semi-hyperbolic rational semigroups and skew products,Ergodic Theory Dynam. Systems 21(2), 563–603, (2001).

    Article  MathSciNet  MATH  Google Scholar 

  52. Ueda, T. Fatou sets in complex dynamics on projective spaces,J. Math. Soc. Japan 46(3), 545–555, (1994).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Steven Bell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roeder, R.K.W. A degenerate Newton’s map in two complex variables: Linking with currents. J Geom Anal 17, 107–146 (2007). https://doi.org/10.1007/BF02922086

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02922086

Math Subject Classifications

Key Words and Phrases

Navigation