Skip to main content
Log in

On the number of singularities for the obstacle problem in two dimensions

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We study the obstacle problem in two dimensions. On the one hand we improve a result of L.A. Caffarelli and N.M. Rivière: we state that every connected component of the interior of the coincidence set has at most N 0 singular points, where N 0 is only dependent on some geometric constants. Moreover, if the component is small enough, then this component has at most two singular points. On the other hand, we prove in a simple case a conjecture of D.G. Schaeffer on the generic regularity of the free boundary: for a family of obstacle problems in two dimensions continuously indexed by a parameter λ, the free boundary of the solution uλ is analytic for almost every λ. Finally we present a new monotonicity formula for singular points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Caffarelli, L.A., and Friedman, A. Variational Problems with two phases and their free boundaries,Trans. Am. Math. Soc.,282(2), 431–461, (1984).

    Article  MathSciNet  Google Scholar 

  2. Beckner, W., Kenig, C., and Pipher, J., in preparation.

  3. Berestycki, H. and Nirenberg, L. On the method of moving planes and the sliding method,Bol. Soc. Brasil. Mat. (N.S.),22, 1–37, (1991).

    Article  MATH  MathSciNet  Google Scholar 

  4. Blank, I. Sharp results for the regularity and stability of the free boundary in the obstacle problem,Indiana Univ. Math. J.,50(3), 1077–1112, (2002).

    MathSciNet  Google Scholar 

  5. Brezis, H.Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, (1993).

    Google Scholar 

  6. Brezis, H. and Kinderlehrer, D. The smoothness of solutions to nonlinear variational inequalities,Indiana Univ. Math. J.,23(9), 831–844, (1974).

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli, L.A. Free boundary problem in higher dimensions,Acta Math.,139, 155–184, (1977).

    Article  MathSciNet  Google Scholar 

  8. Caffarelli, L.A. Compactness methods in free boundary problems,Comm. Partial Differential Equations,5(4), 427–448, (1980).

    Article  MATH  MathSciNet  Google Scholar 

  9. Caffarelli, L.A. A remark on the Hausdorff measure of a free boundary, and the convergence of coincidence sets,Boll. Un. Mat. Ital. A,18(5), 109–113, (1981).

    MATH  MathSciNet  Google Scholar 

  10. Caffarelli, L.A. A Harnack inequality approach to the regularity of free boundaries, Part I: Lipschitz free boundaries areC 1,α,Rev. Mat. Iberoamericana,3(2), 139–162, (1987).

    MATH  MathSciNet  Google Scholar 

  11. Caffarelli, L.A. A Harnack inequality approach to the regularity of free boundaries, Part II: Flat free boundaries are Lipschitz,Comm. Pure Appl. Math.,42, 55–78, (1989).

    Article  MATH  MathSciNet  Google Scholar 

  12. Caffarelli, L.A. A Harnack inequality approach to the regularity of free boundaries, Part III: existence theory, compactness, and dependence on X,Ann. Scu. Norm. Sup. Pisa, Cl. Sci.,15(4), 583–602, (1989).

    MathSciNet  Google Scholar 

  13. Caffarelli, L.A. The obstacle problem revisited,J. Fourier Anal. Appl.,4(4–5), 383–402, (1998).

    Article  MATH  MathSciNet  Google Scholar 

  14. Caffarelli, L.A., Kenig, C.E., and Jerison, D. Some new monotonicity theorems with applications to free boundary problems,Ann. Math. (2),155(2), 369–404, (2002).

    Article  MATH  MathSciNet  Google Scholar 

  15. Caffarelli, L.A. and Rivière, N.M. Smoothness and analyticity of free boundaries in variational inequalities,Ann. Scuola Norm. Sup. Pisa,3(4), 289–310, (1975).

    Google Scholar 

  16. Caffarelli, L.A. and Rivière, N.M. Asymptotic behavior of free boundaries at their singular points,Ann. of Math. 106, 309–317, (1977).

    Article  Google Scholar 

  17. Federer, H.Geometric Measure Theory, Springer-Verlag, (1969).

  18. Frehse, J. On the regularity of the solution of a second order variational inequality,Boll. Un. Mat. Ital. B (7),6(4), 312–315, (1972).

    MATH  MathSciNet  Google Scholar 

  19. Friedman, A.Variational Principles and Free Boundary Problems, Pure and applied mathematics, ISSN 0079-8185, a Wiley-Interscience publication, (1982).

  20. Gilbarg, D.N. and Trudinger, N.S.Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 2nd ed., (1983).

  21. Isakov, V. Inverse theorems on the smoothness of potentials,Differential Equations,11, 50–57, (1976).

    MATH  Google Scholar 

  22. Kato, T. Schrödinger operators with singular potentials,Israel J. Math.,13, 135–148, (1972).

    Article  MathSciNet  Google Scholar 

  23. Kinderlehrer, D. and Nirenberg, L. Regularity in free boundary problems,Ann. Scuola Norm. Sup. Pisa,4, 373–391, (1977).

    MATH  MathSciNet  Google Scholar 

  24. Kinderlehrer, D. and Stampacchia, G.An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, (1980).

    MATH  Google Scholar 

  25. Monneau, R. Problèmes de frontières libres, EDP elliptiques non linéaires et application en combustion, supra-conductivité et élasticité, Doctoral Dissertation, Université Pierre et Marie Curie, Paris, (1999).

    Google Scholar 

  26. Monneau, R. A brief overview on the obstacle problem inProceedings of the Third European Congress of Mathematics, Barcelona, (2000): Progress in Mathematics,202, Birkhäuser Verlag, Basel/Switzerland, 303–312, (2001).

  27. Morrey, C.B.Multiple Integrals in the Calculus of Variations, Die Grundlehrender Mathematischen Wissenschaften in Einzeldarstellungen,130, Springer-Verlag, NY, (1966).

    MATH  Google Scholar 

  28. Rodrigues, J.F.Obstacle Problems in Mathematical Physics, North-Holland, (1987).

  29. Schaeffer, D.G. An example of generic regularity for a non-linear elliptic equation,Arch. Rat. Mach. Anal.,57, 134–141, (1974).

    MATH  MathSciNet  Google Scholar 

  30. Schaeffer, D.G. A Stability theorem for the obstacle problem,Advances in Math.,16, 34–47, (1975).

    Article  Google Scholar 

  31. Schaeffer, D.G. Some examples of singularities in a free boundary,Ann. Scuola Norm. Sup. Pisa,4(4), 131–144, (1976).

    Google Scholar 

  32. Schaeffer, D.G. One-sided estimates for the curvature of the free boundary in the obstacle problem,Adv. in Math.,24, 78–98, (1977).

    Article  MATH  MathSciNet  Google Scholar 

  33. Weiss, G.S. A homogeneity improvement approach to the obstacle problem,Invent. Math.,138, 23–50, (1999).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by David Jerison

Dedicated to Henri Berestycki and Alexis Bonnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monneau, R. On the number of singularities for the obstacle problem in two dimensions. J Geom Anal 13, 359–389 (2003). https://doi.org/10.1007/BF02930701

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02930701

Math Subject Classifications

Key Words and Phrases

Navigation