Skip to main content
Log in

Invariant metrics and the boundary behavior of holomorphic functions on domains in\(\mathbb{C}^n \)

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Invariant metrics are used to provide a unified approach to the study of holomorphic functions in Hardy classes on domains in one and several complex variables. Both approach regions and boundary measures are constructed from the metric. Examples are provided to show how diverse theories can be unified with this approach. The Hartogs extension phenomenon and Fatou’s theorem are seen to be two aspects of the same circle of ideas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [ALA] Aladro, G. The comparability of the Kobayashi approach region and the admissible approach region. Illinois J. Math.33, 27–41 (1989).

    MathSciNet  Google Scholar 

  • [BLG] Bloom, T., and Graham, I. A geometrical characterization of points of typem. J. Diff. Geom.,12, 171–182 (1977).

    MathSciNet  Google Scholar 

  • [CAT1] Catlin, D. Subelliptic estimates for the\(\bar \partial - Neumann\) problem. Ann. Math126, 131–192 (1987).

    Article  MathSciNet  Google Scholar 

  • [CAT2] Catlin, D Estimates of invariant metrics on pseudoconvex domains of dimension two. Math. Z.200, 429–466 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • [CHK] Chang, D. C., and Krantz, S.G. Holomorphic Lipschitz functions and applications to the\(\bar \partial \) problem. Preprint.

  • [CIK] Cima, J. A., and Krantz, S. G. The Lindelöf Principle and normal functions of several complex variables. Duke J. Math.50, 303–328 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  • [CIR] Cirka, E. The theorems of Lindelöf and Fatou in\(\mathbb{C}^n \) Math. USSR Sb21, 619–639 (1973).

    Article  Google Scholar 

  • [EGKP] Erdös, P.; Godsil, C.; Krantz, S. G.; and Parsons, T. D. Intersection graphs for families of balls in\(\mathbb{R}^N \). Eur. J. Combinatorics9, 501–506 (1988).

    MATH  Google Scholar 

  • [FAT] Fatou, P. Series trigonométriques et seéries de Taylor. Acta Math.,30, 335–400 (1906).

    Article  MATH  MathSciNet  Google Scholar 

  • [FED] Dederer, H. Geometric Measure Theory. Berlin New York: Springer Verlag 1969.

    Google Scholar 

  • [FEF] Fefferman, C. The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math.26, 1–65 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  • [GAR] Garnett, J. Bounded Analytic Functions. New York: Academic Press (1981).

    MATH  Google Scholar 

  • [GIL] Gilbert, J. Nikisin-Stein theory and factorization with applications. In: Proc. Symp. Pure Math., Vol. XXXV, Part 2, 233–268, Providence: Am. Math. Soc. 1979.

    Google Scholar 

  • [GRA] Graham, I. Boundary behavior of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in\(\mathbb{C}^n \) with smooth boundary. Trans. AMS207, 219–240 (1975).

    Article  MATH  Google Scholar 

  • [HAS] Hakim, M., and Sibony, N. Fonctions holomorphes bornées et limites tangentielles Duke Math. J.50, 133–141 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  • [KLE] Klembeck, P. Kähler metrics of negative curvature, the Bergman metric near the boundary and the Kobayashi metric on smooth bounded strictly pseudoconvex sets. Indiana Math. J.27, 275–282 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  • [KOB] Kobayashi, S. Hyperbolic Manifolds and Holomorphic Mappings. New York: Marcel Dekker 1970.

    MATH  Google Scholar 

  • [KOH] Kohn, J. J. Boundary behavior of\(\bar \partial \) on weakly pseudoconvex manifolds of dimension two. J. Diff. Geom.6, 523–542 (1972).

    MATH  MathSciNet  Google Scholar 

  • [KOR] Koranyi, A. Harmonic functions on hermitian hyperbolic space. Trans. AMS135, 507–516 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  • [KR1] Krantz, S. G. Function Theory of Several Complex Variables. New York: Wiley 1982.

    MATH  Google Scholar 

  • [KR2] Krantz, S. G. Fatou theorems on domains in\(\mathbb{C}^n \). BAMS16, 93–96 (1987).

    MATH  MathSciNet  Google Scholar 

  • [KR3] Krantz, S. G. The boundary behavior of the Kobayashi metric. Rocky Mt. J. Math. In press.

  • [KR4] Krantz, S. G. On a theorem of Stein. Trans. Am. Math. Soc.320, 625–642 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  • [KR5] Krantz, S. G. Lectures on Hardy Spaces in Complex Domains. Univ. of Umea Technical Report, 1986.

  • [KM1] Krantz, S. G., and Ma, Daowei Bloch functions on strongly pseudoconvex domains. Indiana Univ. Math. J.37, 145–163 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  • [KM2] Krantz, S. G., and Ma, Daowei. On isometric isomorphisms of the Bloch space on the unit ball of\(\mathbb{C}^n \). Mich. Math. J.,36, 173–180 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  • [KRP] Krantz, S. G., and Parks, H. R. Distance toC k hypersurfaces. J. Diff. Eq.40, 116–120 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • [KPA] Krantz, S. G., and Parsons, T. D. Antisocial subcoverings of self-centered coverings. Am. Math. Monthly93. 45–48 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • [NAR] Nagel, A., and Rudin, W. Local boundary behavior of bounded holomorphic functions. Can. J. Math.,30, 583–592 (1978).

    MATH  MathSciNet  Google Scholar 

  • [NSW1] Nagel, A.; Stein, E. M.; and Wainger, S. Boundary behavior of functions holomorphic in domains of finite type. Proc. Natl. Acad. Sci. U.S.A78, 6596–6599 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  • [NSW2] Nagel, A.; Stein, E. M.; and Wainger, S. Balls and metrics defined by vector fields. I: Basic properties. Acta Math.155, 103–147 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  • [PEL] Pelles, D. Intrinsic measures on complex manifolds and holomorphic mappings. Memoir of the AMS No. 96. Providence: Am. Math. Soc. 1970.

    Google Scholar 

  • [RAM] Ramey, W. Local boundary behavior of plurisubharmonic functions along curves. Am. J. Math.,108, 175–191 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  • [SAW] Sawyer, S. Maximal inequalities of weak type. Ann. Math.,84, 157–174 (1966).

    Article  MathSciNet  Google Scholar 

  • [SIB] Sibony, N. A class of hyperbolic manifolds. In: Recent Developments in Several Complex Variables edited by J. Fornaess, 357–372. Princeton NJ: Princeton University Press 1981.

    Google Scholar 

  • [SMI] Smith, K. T. A generalization of an inequality of Hardy and Littlewood. Can. J. Math.8, 157–170 (1956).

    MATH  Google Scholar 

  • [ST1] Stein, E. M. The Boundary Behavior of Holomorphic Functions of Several Complex Variables, Princeton NJ: Princeton University Press 1972.

    Google Scholar 

  • [ST2] Stein, E. M. On limits of sequences of operators. Ann. Math.74, 140–170 (1961).

    Article  Google Scholar 

  • [ST3] Stein, E. M. Singular Integrals and Differentiability Properties of Functions. Princeton NJ: Princeton University Press 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Author supported in part by a grant from the National Science Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krantz, S.G. Invariant metrics and the boundary behavior of holomorphic functions on domains in\(\mathbb{C}^n \) . J Geom Anal 1, 71–97 (1991). https://doi.org/10.1007/BF02938115

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02938115

1980 Math Subject Classification

Key Words and Phrases

Navigation