Skip to main content
Log in

Abstract

We prove that, for an analytic family of “weakly tame” regular functions on an affine manifold, the spectrum at infinity of each function of the family is semicontinuous in the sense of Varchenko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Broughton, Milnor number and the topology of polynomial hypersurfaces.Invent. Math. 92 (1988), 217–241.

    Article  MATH  MathSciNet  Google Scholar 

  2. J.-L. Brylinski,Transformations canoniques, dualité protective, théorie de Lefschetz, transformation de Fourier et sommes trigonométriques. in: Géométrie et analyse microlocales.Astérisque,140-141 (1986), 3–134.

    MathSciNet  Google Scholar 

  3. R. García López andA. Némethi, On the monodromy at infinity of a polynomial map.Compositio Math. 100 (1996), 205–231.

    MATH  MathSciNet  Google Scholar 

  4. R. García López andA. Némethi, Hodge numbers attached to a polynomial map. Preprint alg-geom/9701003 (1997), to appear inAnn. Institut Fourier (Grenoble).

  5. M. Kashiwara andP. Schapira,Sheaves on manifolds. Springer 1990.

  6. Z. Mebkhout, Le formalisme des six opérations de Grothendieck pour les D-modules cohérents.Travaux en cours 35, Hermann, Paris, 1989.

  7. Z. Mebkhout andL. Narväez-Macarro, Le théorème de constructibilité de Kashiwara, élÉments de la théorie des systèmes différentiels. Les cours du CIMPA,Travaux en cours 46, Hermann, Paris, 1993, 47–98.

    Google Scholar 

  8. Z. Mebkhout andC. Sabbah, D-modules et cycles évanescents. in: [6],Travaux en cours 35, 1989, 201–239.

    Google Scholar 

  9. A. Némethi andA. Zaharia, On the bifurcation set of a polynomial function and Newton boundary,Publ. RIMS, Kyoto Univ. 26 (1990), 681–689.

    MATH  Google Scholar 

  10. A. Parusiński, A note on singularities at infinity of complex polynomials, in: Symplectic singularities and geometry of gauge fields39 (1995),Banach Center Publications (1997) 131–141.

    Google Scholar 

  11. C. Sabbah, Hypergeometric periods for a tame polynomial. Preprint (1996), math.AG/9805077, andC. R. Acad. Sci. Paris 328 (1999), 603–308.

    MATH  MathSciNet  Google Scholar 

  12. —, Monodromy at infinity and Fourier transform.Publ. RIMS, Kyoto Univ. 33 (1998), 643–685.

    MathSciNet  Google Scholar 

  13. M. Saito, Mixed Hodge Modules.Publ. RIMS, Kyoto Univ. 26 (1990), 221–333.

    Article  MATH  Google Scholar 

  14. P. Schapira andJ.-P. Schneiders, Index theorem for elliptic pairs.Astérisque 224 (1994).

  15. J. Steenbrink, Semi-continuity of the singularity spectrum.Invent. Math. 79 (1985), 557–565.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Steenbrink andS. Zucker, Variation of mixed Hodge structure I.Invent. Math. 80 (1985), 489–542.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. N. Varchenko, On semicontinuity of the spectrum and an upper bound for the number of singular points of projective hypersurfaces.Sov. Math. Dokl. 27 (1983), 735–739.

    MATH  Google Scholar 

  18. —, The spectrum and decompositions of a critical point of a function.Sov. Math. Dokl. 27(1983), 575–579.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrá Némethi or Claude Sabbah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Némethi, A., Sabbah, C. Semicontinuity of the spectrum at infinity. Abh.Math.Semin.Univ.Hambg. 69, 25–35 (1999). https://doi.org/10.1007/BF02940860

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02940860

Keywords

Navigation