Skip to main content
Log in

Recent developments in primality testing

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

Conclusion

Is there an algorithm that can decide whethern is prime or composite and that runs in polynomial time? The Adleman-Rumely algorithm and the Lenstra variations come so close, that it would seem that almost any improvement would give the final breakthrough.

Is factoring inherently more difficult than distinguishing between primes and composites? Most people feel that this is so, but perhaps this problem too will soon yield.

In his “Disquisitiones Arithmeticae” Gauss [9], p. 396, wrote

“The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. It has engaged the industry and wisdom of ancient and modern geometers to such an extent that it would be superfluous to discuss the problem at length. Nevertheless we must confess that all methods that have been proposed thus far are either restricted to very special cases or are so laborious and prolix that even for numbers that do not exceed the limits of tables constructed by estimable men, i.e., for numbers that do not yield to artificial methods, they try the patience of even the practiced calculator. And these methods do not apply at all to larger numbers.”

The struggle continues!

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Adleman, C. Pomerance, R. S. Rumely, On distinguishing prime numbers from composite numbers (to appear). Also see the paper by L. M. Adleman of the same title in Proc. 21-st FOCS Conf. (1980)

  2. N. C. Ankeny, The least quadratic non residue. Ann. Math. (2) 55 (1952), 65–72.

    Article  MathSciNet  Google Scholar 

  3. J. Brillhart, D. H. Lehmer, J. L. Selfridge, New primality criteria and factorizations of 2m ± 1. Math. Comp. 29 (1975), 620–647.

    MATH  MathSciNet  Google Scholar 

  4. R. A. DeMillo, R. J. Lipton, A. J. Perlis, Social processes and proofs of theorems and programs, Comm. ACM 22 (1979), 271–280. Also in Math. Intelligencer 3 (1980), 31-40

    Article  Google Scholar 

  5. L. E. Dickson,History of the Theory of Numbers, Vol. 1, Press of Gibson Brothers, Washington, D.C. 1919

    MATH  Google Scholar 

  6. J. D. Dixon, Asymptotically fast factorization of integers. Math. Comp. 36 (1981), 255–260

    Article  MATH  MathSciNet  Google Scholar 

  7. P. Erdös, On almost primes, Amer. Math. Monthly 57 (1950), 404–407

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Erdös, S. Ulam, Some probabilistic remarks on Fermat’s last theorem. Rocky Mountain J. Math. 1 (1971), 613–616

    Article  MATH  MathSciNet  Google Scholar 

  9. C. F. Gauss,Disquisitiones Arithmeticae (A. A. Clarke, transi.). Yale University Press, New Haven, Connecticut, London 1966

    Google Scholar 

  10. D. B. Gillies, Three new Mersenne primes and a statistical theory. Math. Comp. 18 (1964), 93–97

    Article  MATH  MathSciNet  Google Scholar 

  11. G. B. Kolata, Mathematical proofs: The genesis of reasonable doubt. Science 192 (1976), 989–990

    Article  Google Scholar 

  12. G. B. Kolata, Prior restraints on cryptogryphy considered. Science 208 (1980), 1442–1443. Also, Cryptology: A secret meeting at IDA? Science 200 (1978), 184. Also, D. Shapley and G. B. Kolata, Cryptology: Scientists puzzle over threat to open research, publication. Science 197 (1977), 1345-1349

    Article  Google Scholar 

  13. I. Lakatos,Proofs and Refutations. Cambridge University Press, Cambridge, London, New York, Melbourne 1976

    Book  MATH  Google Scholar 

  14. D. H. Lehmer, On the exact number of primes less than a given limit. Illinois J. Math. 3 (1959), 381–388

    MATH  MathSciNet  Google Scholar 

  15. D. H. Lehmer, Strong Carmichael numbers. J. Austral. Math. Soe. Ser. A 21 (1976), 508–510

    Article  MathSciNet  Google Scholar 

  16. H. W. Lenstra, Jr., Miller’s primality test. Inform. Process. Lett. 8 (1979), 86–88

    Article  MATH  MathSciNet  Google Scholar 

  17. H. W. Lenstra, Jr., Primality testing. Studieweek Getaltheorie en Computers, Sept. 1-5, 1980, Stichting Math. Centrum, Amsterdam

    Google Scholar 

  18. E. Lucas,Théorie des Nombres. Tome 1, Librarie Blanchard, Paris, 1961

    Google Scholar 

  19. D. E. G. Malm, On Monte-Carlo primality tests. Unpublished (but see [25], Theorem 4)

  20. G. L. Miller, Riemann’s hypothesis and tests for primality. J. Comput. System Sci. 13 (1976), 300–317

    Article  MATH  MathSciNet  Google Scholar 

  21. M. A. Morrison, J. Brillhart, A method of factoring and the factorization of F7. Math. Comp. 29 (1975), 183–205

    MATH  MathSciNet  Google Scholar 

  22. C. Noll, L. Nickel, The 25th and 26th Mersenne primes. Math. Comp. 35 (1980), 1387–1390

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Pomerance, A new lower bound for the pseudoprime counting function. Illinois J. Math., to appear

  24. C. Pomerance, On the distribution of pseudoprimes. Math. Comp., to appear

  25. C. Pomerance, J. L. Selfridge, S. S. Wagstaff, Jr., The pseudoprimes to 25 · 109. Math. Comp. 35 (1980), 1003–1026

    MATH  MathSciNet  Google Scholar 

  26. V. R. Pratt, Every prime has a succinct certificate. SIAM J. Comput. 4 (1975), 214–220

    Article  MATH  MathSciNet  Google Scholar 

  27. M. O. Rabin, Probabilistic algorithms. In:J. F. Traub, ed.,Algorithms and Complexity. Academic Press, New York, San Francisco, London, 1976, 21–39

    Google Scholar 

  28. M. O. Rabin, Probabilistic algorithm for primality testing. J. Number Theory 12 (1980), 128–138

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. MIT Lab for Comp. Sci., Technical Memo LCS/TM82,1977. Also Comm. ACM 21 (1978), 120–128

    Article  MATH  MathSciNet  Google Scholar 

  30. J. B. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94

    MATH  MathSciNet  Google Scholar 

  31. G. J. Simmons, Cryptology: The mathematics of secure communication. Math. Intelligencer 1 (1979), 233–246

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Slowinski, Searching for the 27th Mersenne prime. J. Recreational Math. 11 (1978-79), 258–261

    MATH  MathSciNet  Google Scholar 

  33. R. Solovay, V. Strassen, A fast Monte-Carlo test for primality. SIAM J. Comput. 6 (1977), 84–85; erratum, 7 (1978), 118

    Article  MATH  MathSciNet  Google Scholar 

  34. B. Tuckerman, The 24th Mersenne prime. Proc. Nat. Acad. Sci. USA 68 (1971), 2319–2320

    Article  MATH  MathSciNet  Google Scholar 

  35. H. C. Williams, Primality testing on a computer. Ars Combinatoria 5 (1978), 127–185

    MATH  MathSciNet  Google Scholar 

  36. H. C. Williams, R. Holte, Some observations on primality testing, Math. Comp. 32 (1978), 905–917

    Article  MATH  MathSciNet  Google Scholar 

  37. H. C. Williams, J. S. Judd, Some algorithms for prime testing using generalized Lehmer functions. Math. Comp. 30 (1976), 867–886

    MATH  MathSciNet  Google Scholar 

  38. M. Wunderlich, A report on the factorization of 2797 numbers using the continued fraction method. To appear

  39. G. J. Chaitin, J. T. Schwartz, A note on Monte Carlo primality tests and algorithmic information theory, Comm. Pure Appl. Math. 31 (1978), 521–527

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomerance, C. Recent developments in primality testing. The Mathematical Intelligencer 3, 97–105 (1981). https://doi.org/10.1007/BF03022861

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03022861

Keywords

Navigation