Skip to main content
Log in

An explicit formula of the exponential sums of digital sums

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

We give a simple explicit formula of the exponential sum of digital sums by use of the distribution function of the binomial measure. We also apply our formula to the study of the power sums of digital sums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Bush, An asymptotic formula for the average sums of the digits of integers. Amer. Math. Monthly,47(1940), 154–156.

    Article  MathSciNet  Google Scholar 

  2. J. Coquet, A summation formula related to the binary digits. Invent. Math.,73(1983), 107–115.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Coquet, Power sums of digital sums. J. Number Theory,22(1986), 161–176.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Delange, Sur la fonction sommatoire de la fonction “somme des chiffres”. Enseign. Math., (2),21(1975), 31–47.

    MATH  MathSciNet  Google Scholar 

  5. P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function. Fibonacci Numbers and Applications, Vol.5, Kluwer, 1993.

  6. H. Harborth, Number of odd binomial coefficients. Proc. Amer. Math. Soc.,62(1977), 19–22.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Hata and M. Yamaguti, The Takagi function and its generalization. Japan J. Appl. Math.,1(1984), 183–199.

    Article  MATH  MathSciNet  Google Scholar 

  8. L. Mirsky, A theorem on representations of integers in the scale, ofr. Scripta Math.,15(1949) 11–12.

    MATH  MathSciNet  Google Scholar 

  9. T. Okada, T. Sekiguchi and Y. Shiota, Applications of binomial measures to power sums of digital sums. J. Number Theory,52(1995), 256–266.

    Article  MATH  MathSciNet  Google Scholar 

  10. T. Okada, T. Sekiguchi and Y. Shiota, A generalization of Hata-Yamaguti’s results on the Takagi function II: Multinomial case. Preprint.

  11. A. H. Osbaldestin, Digital sum problems. Fractals in the Fundamental and Applied Sciences, Elsevier Science Publishers B. V., North-Holland, 1991.

    Google Scholar 

  12. R. Salem, On some singular monotonic functions which are strictly increasing. Trans. Amer. Math. Soc.,53(1943), 427–439.

    Article  MATH  MathSciNet  Google Scholar 

  13. T. Sekiguchi and Y. Shiota, A generalization of Hata-Yamaguti’s results on the Takagi function. Japan J. Indust. Appl. Math.,8(1991), 203–219.

    MATH  MathSciNet  Google Scholar 

  14. A. H. Stein, Exponential sums of sum-of-digit functions. Illinois J. Math.,30(1986), 660–675.

    MATH  MathSciNet  Google Scholar 

  15. K. B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity. SIAM J. Appl. Math.,32(1977), 717–730.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. R. Trollope, An explicit expression for binary digital sums. Math. Mag.,41(1968), 21–25.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Okada, T., Sekiguchi, T. & Shiota, Y. An explicit formula of the exponential sums of digital sums. Japan J. Indust. Appl. Math. 12, 425–438 (1995). https://doi.org/10.1007/BF03167237

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167237

Key words

Navigation