Skip to main content
Log in

Point condensation generated by a reaction-diffusion system in axially symmetric domains

  • Published:
Japan Journal of Industrial and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider the stationary problem for a reaction-diffusion system of activator-inhibitor type, which models biological pattern formation, in an axially symmetric domain. It is shown that the system has multi-peak stationary solutions such that the activator is localized around some boundary points if the activator diffuses very slowly and the inhibitor diffuses rapidly enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Berestycki, T. Gallouët and O. Kavian, Equations de champs scalaires euclidiens nonlinéaires dans le plan. C. R. Acad. Sci. Paris, Série I Math.,297 (1983), 307–310.

    MATH  Google Scholar 

  2. C.-C. Chen and C.-S. Lin, Uniqueness of the ground state solution of δu+f(u)=0 in ℝn,n≥3. Comm. Partial Differential Equations,16 (1991), 1549–1572.

    Article  MATH  Google Scholar 

  3. B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations inR n Adv. Math. Suppl. Stud.,7A (1981), 369–402.

    MathSciNet  Google Scholar 

  4. A. Gierer and H. Meinhardt, A theory of biological pattern formation. Kybernetik (Berlin),12 (1972), 30–39.

    Article  Google Scholar 

  5. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Second Edition. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983.

    MATH  Google Scholar 

  6. J. P. Keener, Activators and inhibitors in pattern formation. Stud. Appl. Math.,59 (1978), 1–23.

    MathSciNet  Google Scholar 

  7. M. K. Kwong, Uniqueness of positive solutions of °uu+u p=0 in ℝn. Arch. Rational Mech. Anal.,105 (1991), 243–266.

    MathSciNet  Google Scholar 

  8. M. K. Kwong and L. Zhang, Uniqueness of the positive solutions of °u+f(u)=0 in an annulus. Differential Integral Equations,4 (1991), 583–599.

    MATH  MathSciNet  Google Scholar 

  9. C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system. J. Differential Equations,72 (1988), 1–27.

    Article  MATH  MathSciNet  Google Scholar 

  10. K. McLeod, Uniqueness of positive radial solutions of °u+f(u)=0 inR n, II. Preprint.

  11. Y. Mimura, M. Tabata and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter. SIAM J. Math. Anal.,11 (1981), 613–631.

    Article  MathSciNet  Google Scholar 

  12. W.-M. Ni and I. Takagi, On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type. Trans. Amer. Math. Soc.,297 (1986), 351–368.

    Article  MATH  MathSciNet  Google Scholar 

  13. W.-M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem. Comm. Pure Appl. Math.,44 (1991), 819–851.

    Article  MATH  MathSciNet  Google Scholar 

  14. W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem. Duke Math. J.,70 (1993), 247–281.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Anal.,13 (1982), 555–593.

    Article  MATH  MathSciNet  Google Scholar 

  16. Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction-diffusion equations. SIAM J. Math. Anal.,18 (1987), 1726–1770.

    Article  MATH  MathSciNet  Google Scholar 

  17. K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems. Tôhoku Math. J.,42 (1990), 17–44.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. A. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys.,55 (1977), 149–162.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Takagi, Point-condensation for a reaction-diffusion system. J. Differential Equations,61 (1986), 208–249.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Ni, WM., Takagi, I. Point condensation generated by a reaction-diffusion system in axially symmetric domains. Japan J. Indust. Appl. Math. 12, 327–365 (1995). https://doi.org/10.1007/BF03167294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167294

Key words

Navigation