Skip to main content
Log in

A harmonic calculus on the Sierpinski spaces

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

Abstract

A reconstruction of the well-known theory of calculus on [0, 1] will naturally bring a calculus associated with the harmonic functions, Laplace operator, Gauss-Green’s formula and so on, on theN-Sierpinski space whose Hausdorff dimension is (logN)/(log 2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. T. Barlow and E. A. Perkins, Brownian motion on the Sierpinski gasket. Prob. Theo. Rel. Fields,79 (1988), 543–624.

    Article  MATH  MathSciNet  Google Scholar 

  2. F. M. Dekking, Recurrent sets. Adv. in Math.,44 (1982), 78–104.

    Article  MATH  MathSciNet  Google Scholar 

  3. K. J. Falconer, The Geometry of Fractal Sets. Cambridge, 1985.

  4. M. Hata, On the structure of self-similar sets. Japan J. Appl. Math.,2 (1985), 381–414.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Hata and M. Yamaguti, The Takagi function and its generalization. Japan J. Appl. Math.,1 (1984), 183–199.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J.,30 (1981), 713–747.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Kusuoka, A diffusion process on a fractal. Probabilistic Methods in Mathematical Physics, Taniguchi Symp., Katata 1985 (eds. K. Ito, N. Ikeda), Kinokuniya-North Holland, 1987, 251–274.

  8. B. B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freeman, San Francisco, 1982.

    MATH  Google Scholar 

  9. P. A. P. Moran, Additive functions of interval and Hausdorff measure. Proc. Camb. Philos. Soc.,42 (1946), 15–23.

    Article  MATH  Google Scholar 

  10. W. Sierpinski, Sur une courbe dont tout point est un point de ramification. C. R. Acad. Sci. Paris,160 (1915), 302–305.

    MATH  Google Scholar 

  11. M. Yamaguti and J. Kigami, Some remarks on Dirichlet problem of Poisson equation. Analyse Mathematique et Applications, Gauthier-Villars, Paris, 1988, 465–471.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kigami, J. A harmonic calculus on the Sierpinski spaces. Japan J. Appl. Math. 6, 259–290 (1989). https://doi.org/10.1007/BF03167882

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167882

Key words

Navigation