Skip to main content
Log in

A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods

  • Published:
Japan Journal of Applied Mathematics Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 1990

Abstract

In this paper we discuss the numerical implementation of a systematic method for the exact boundary controllability of the wave equation, concentrating on the particular case of Dirichlet controls. The numerical methods described here consist in a combination of: finite element approximations for the space discretization; explicit finite difference schemes for the time discretization; a preconditioned conjugate gradient algorithm for the solution of the discrete problems; a pre/post processing technique based on a biharmonic Tychonoff regularization. The efficiency of the computational methodology is illustrated by the results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.L. Lions, Controlabilité exacte des systèmes distribués. C. R. Acad. Sci. Paris,302 (1986), 471–475.

    MATH  Google Scholar 

  2. J.L. Lions, Exact Controllability, stabilization and perturbations for distributed systems. SIAM Review.30 (1988), 1–68.

    Article  MATH  MathSciNet  Google Scholar 

  3. J.L. Lions, Contrôlabilité Exacte, perturbations et Stabilisation des Systèmes Distribués. Volumes 1 and 2. Masson, Paris, 1988.

    Google Scholar 

  4. R. Glowinski, C.H. Li, J.L. Lions, A numerical approach to the exact boundary controllability of the wave equation (II) Dirichlet controls: Further numerical experiments (to appear).

  5. R.A. Adams, Sobolev Spaces. Academic Press, New York, 1975.

    MATH  Google Scholar 

  6. J.L. Lions, E. Magenes, Nonhomogeneous Boundary Value Problems and Applications. Vols. 1 and 2, Springer-Verlag, Berlin, 1972.

    Google Scholar 

  7. L.F. Ho, Observabilité frontière de l’équation des ondes. C. R. Acad. Sci. Paris,302 (1986), 443–446.

    MATH  Google Scholar 

  8. D.L. Russel, A unified boundary controllability theory. Studies in Appl. Math.,52 (1973), 189–211.

    MathSciNet  Google Scholar 

  9. D.L. Russel, Controllability and Stabilizability theory for linear partial differential equations. Recent progress and open questions, SIAM Review,20 (1978), 639–739.

    Article  MathSciNet  Google Scholar 

  10. W. Littman, Boundary control theory for hyperbolic and parabolic equations with constant coefficients. Ann. Scuola Norm. Sup. Pisa IV, (1978), 567–580.

    MathSciNet  Google Scholar 

  11. J. Lagnese, Boundary value control of a class of hyperbolic equations in a general domain. SIAM J. Control Optim.15 (1977), 973–983.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Daniel, The Approximate Minimization of Functionals. Prentice Hall, Englewood Cliffs, N. J., 1970.

    Google Scholar 

  13. R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Rev.21(2) (1979), 167–212.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York, 1984.

    MATH  Google Scholar 

  15. P. Swarztrauber, The method of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev.,19 (1977), 490–501.

    Article  MATH  MathSciNet  Google Scholar 

  16. P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic equations. Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. Vol. 606, Springer-Verlag, Heidelberg, 1977, 292–315.

    Google Scholar 

  17. R. Lattes et J.L. Lions, Méthode de Quasi-Réversibilité et Applications. Dunod, Paris, 1967.

    MATH  Google Scholar 

  18. J.L. Lions, Perturbations Singulières dans les Problèmes aux Limites et en Contrôle Optimal. Lecture Notes in Math., Vol. 323, Springer-Verlag, Heidelberg, 1973.

    MATH  Google Scholar 

  19. J.L. Lions, A remark on the approximation of nonhomogeneous hyperbolic boundary value problems. Vistas in Applied Mathematics (eds. A.V. Balakrishnan, A.A. Dorodnitsyn, J.L. Lions), Optimization Software, Inc., New York, 1986, 114–126.

    Google Scholar 

  20. A. El Jai et A.J. Pritchard, Capteurs et Actionneurs dans l’Analyse des Systèmes Distribués. Masson, Paris, 1986.

    MATH  Google Scholar 

  21. A. El Jai et A. Gonzales, Actionneurs et Contrôlabilité des Systèmes Hyperboliques. Univ. Perpignan Research Report, Perpignan, France, 1987.

  22. J.E. Dennis and R.B. Schnabel, A View of Unconstrained Optimization. Handbooks in Operations Research and Management Science, Vol. 1, Optimization (eds. A.H.G. Rinneoy Kan, M.J. Todd), North-Holland, Amsterdam (to appear).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Jim Douglas for his 60th Birthday

An erratum to this article is available at http://dx.doi.org/10.1007/BF03167859.

About this article

Cite this article

Glowinski, R., Li, CH. & Lions, JL. A numerical approach to the exact boundary controllability of the wave equation (I) Dirichlet controls: Description of the numerical methods. Japan J. Appl. Math. 7, 1–76 (1990). https://doi.org/10.1007/BF03167891

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03167891

Key words

Navigation