Skip to main content
Log in

Continued Fractions, Discrete Groups and Complex Dynamics

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

It is well-known that a continued fraction may be regarded as a sequence of Möbius maps. In this partly expository paper we consider continued fractions by examining the action of Möbius maps in hyperbolic space, and in all dimensions. We obtain a general version of the Stern-Stolz theorem valid in all dimensions, and we draw comparisons between the theory of continued fractions and the theories of discrete groups of Möbius maps, and complex dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Abikoff, The bounded model for hyperbolic 3-space and a quaternionic Uniformization Theorem, Math. Scand. 54 (1984), 5–16.

    MathSciNet  MATH  Google Scholar 

  2. B. Aebischer, The limiting behaviour of sequences of Möbius transformations, Math. Zeit. 205 (1990), 49–59.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Aebischer, Stable convergence of sequences of Möbius transformations, in: Computational Methods and Function Theory (CMFT ’94), eds. R. M. Ali, St. Ruscheweyh and E. B. Saff, World Scientific Pub. Co., 1995, 1–21.

  4. L. V. Ahlfors, Hyperbolic motions, Nagoya Math. J. 29 (1967), 163–166.

    MathSciNet  MATH  Google Scholar 

  5. L. V. Ahlfors, Möbius Transformations in Several Dimensions, Univ. Minnesota Lecture Notes, Minnesota, 1981.

    MATH  Google Scholar 

  6. L. V. Ahlfors, On the fixed points of Möbius transformations in Rn, Ann. Acad. Sci. Fenn. Ser. A. 1. Math. 10 (1985), 15–27.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. V. Ahlfors, Möbius Transformations and Clifford Numbers, in Differential Geometry and Complex Analysis, eds. I. Chavel, and H.M. Farkas, Springer-Verlag, Berlin (1985), 65–73.

    Chapter  Google Scholar 

  8. L. V. Ahlfors, Clifford numbers and Möbius transformations in Rn, Clifford algebras and their applications in mathematical physics, (Canterbury, 1985), 167–175, NATO Adv. Sci. Inst. Ser. C Math. Phy. Sci., 183, Reidel, Dordrecht, 1986.

  9. L. V. Ahlfors, Möbius transformations in Rn expressed through 2 × 2 matrices of Clifford numbers, Complex Variables Theory Appl. 5 (1986), 215–224.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. N. Baker and P. J. Rippon, Towers of exponents and other composite maps, Complex Variables 12 (1989), 181–200.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. F. Beardon and B. Maskit, Limit points of Kleinian groups and finite-sided fundamental polyhedra, Acta Math. 132 (1974), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, 1983.

  13. A. F. Beardon and J. B. Wilker, The norm of a Mobius transformation, Math. Proc. Camb. Phil. Soc. 96 (1984), 301–308.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. F. Beardon, Iteration of Rational Functions, Springer-Verlag, 1991.

  15. A. F. Beardon, The geometry of Pringsheim’s continued fractions, Geometriae Dedicata 84 (2001), 125–134.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. F. Beardon and D. Minda, Sphere-preserving maps in inversive geometry, Proc. Amer. Math. Soc. 130 (2002), 987–998.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. F. Beardon, T. K. Carne, D. Minda, and T. W. Ng, Random iteration of analytic maps, to appear in Ergodic Th. & Dyn. Systems.

  18. A. F. Beardon and L. Lorentzen, Continued fractions and restrained sequences of Möbius maps, to appear in Rocky Mount. J. Math..

  19. A. F. Beardon, Continued fractions, Möbius transformations and Clifford algebras, to appear in Bull. London Math. Soc.

  20. A. F. Beardon, The Hillam-Thron Theorem in higher dimensions, to appear in Geom. Dedicata.

  21. A. F. Beardon, Repeated compositions of analytic maps, to appear in Comp. Methods and Function Theory.

  22. A. F. Beardon, The pointwise convergence of Möbius maps, preprint, 2002.

  23. R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, 1992.

  24. C. Cao and P. L. Waterman, Conjugacy invariants of Möbius groups, Quasiconformal mappings and analysis (Ann Arbor, MI, 1995), Springer, New York, 1998, 109–139.

    Chapter  Google Scholar 

  25. L. Carleson and T. W. Gamelin, Complex Dynamics, Springer-Verlag, 1993.

  26. S. S. Chen and L. Greenberg, Hyperbolic spaces, in: Contributions to Analysis, eds L. V. Ahlfors, I. Kra, B. Maskit, and L. Nirenberg, Academic Press, 1974.

  27. H. S. M. Coxeter, Inversive distance, Ann. Mat. Pura Appl. 71 (1966), 73–83.

    Article  MathSciNet  MATH  Google Scholar 

  28. H. S. M. Coxeter, The inversive plane and hyperbolic space, Hamburger Math. Abh. 29 (1966), 217–242.

    Article  MathSciNet  MATH  Google Scholar 

  29. H. S. M. Coxeter, The Lorentz group and the group of homographies, Proc. Intern. Conf. Theory of Groups (Canberra 1965), Gordon and Breach, New York, 1967.

    Google Scholar 

  30. H. Davenport, The Higher Arithmetic, Sixth Edn, Cambridge Univ. Press, 1995.

  31. J. D. de Pree and W. J. Thron, On sequences of Moebius transformations, Math. Zeit. 80 (1962), 184–193.

    Article  MATH  Google Scholar 

  32. J. Dieudonné, Treatise on Analysis, Vol II, Academic Press, 1970.

  33. P. Du Val, Homographies, Quaternions and Rotations, Clarendon Press, Oxford, 1964.

    MATH  Google Scholar 

  34. W. Fenchel, Elementary Geometry in Hyperbolic Space, De Gruyter Studies in Mathematics 11, de Gruyter, 1989.

  35. L. R. Ford, A geometrical proof of a theorem of Hurwitz, Proc. Edinburgh Math. Soc. 35 (1917), 59–65.

    Article  Google Scholar 

  36. L. R. Ford, Rational approximations to irrational complex numbers, Trans. Amer. Math. Soc. 19 (1918), 1–42.

    MathSciNet  MATH  Google Scholar 

  37. L. R. Ford, Fractions, Amer. Math. Monthly 45 (1938), 586–601.

    Article  MathSciNet  Google Scholar 

  38. L. R. Ford, Automorphic functions, Chelsea Pub. Co., Second Edition, 1951.

  39. F. W. Gehring and G. J. Martin, The Matrix and Chordal Norms of Möbius Transformations, Complex Analysis, Birkhäuser, Basel, 1988, 51–59.

    Chapter  Google Scholar 

  40. F. W. Gehring and G. J. Martin, Inequalities for Möbius transformations and discrete groups, J. Reine Angew. Math. 418 (1991), 31–76.

    MathSciNet  MATH  Google Scholar 

  41. J. Gill, Infinite compositions of Möbius transformations, Trans. American Math. Soc. 176 (1973), 479–487.

    MATH  Google Scholar 

  42. P. G. Gormley, Stereographic projection and the linear fractional group of transformations of quaternions, Proc. Royal Irish Acad. Sect A 51 6 (1947), 67–85.

    MathSciNet  Google Scholar 

  43. L. Greenberg, Discrete subgroups of the Lorentz group, Math. Scand. 10 (1962), 85–107.

    MathSciNet  MATH  Google Scholar 

  44. W. R. Hamilton, On continued fractions in quaternions, Phil. Mag., iii (1852), 371–373; iv (1852), 303; v (1853), 117–118, 236–238, 321–326.

    Google Scholar 

  45. W. R. Hamilton, On the connexion of quaternions with continued fractions and quadratic equations, Proc. Royal Irish Acad. 5 (1853), 219–221, 299–301.

    Google Scholar 

  46. P. Henrici, Applied and Computational Complex Analysis, Vol. 2, Special Functions, Integral Transforms, Asymptotics and Continued Fractions, Wiley, New York, 1977.

    Google Scholar 

  47. K. L. Hillam and W. J. Thron, A general convergence criterion for continued fractions K(a n/b n), Proc. Amer. Math. Soc. 16 (1965), 1256–1262.

    MathSciNet  MATH  Google Scholar 

  48. L. Jacobsen, General convergence of continued fractions, Trans. Amer. Math. Soc. 294 (1986), 477–485.

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Jacobsen and W. J. Thron, Limiting structures for sequences of linear fractional transformations, Proc. Amer. Math. Soc. 99 (1987), 141–146.

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Jacobsen, Nearness of continued fractions, Math. Scand. 60 (1987), 129–147.

    MathSciNet  MATH  Google Scholar 

  51. W. B. Jones and W. J. Thron, Continued Fractions: Analytic Theory and Applications, Encyclopedia of Mathematics and its Applications, 11, Addison-Wesley, Reading, Mass, (1980). Now distributed by Cambridge Univ. Press, New York.

    Google Scholar 

  52. I. L. Kantor and A. S. Solodovnikov, Hypercomplex Numbers, Springer-Verlag, 1989.

  53. R. E. Lane, The convergence and values of periodic continued fractions, Bull. Amer. Math. Soc. 51 (1945) 246–250.

    Article  MathSciNet  MATH  Google Scholar 

  54. L. Lorentzen, Compositions of contractions, J. Comput. Appl. Math. 32 (1990), 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  55. L. Lorentzen and H. Waadeland, Continued Fractions and Some of its Applications, North-Holland, 1992

  56. L. Lorentzen, The closure of convergence sets for continued fractions are convergence sets, Proc. Ednburgh Math. Soc., 37 (1993), 39–46.

    Article  MathSciNet  Google Scholar 

  57. L. Lorentzen, Divergence of continued fractions related to hypergeometric series, Math. Comp. 62 (1994), 671–686.

    Article  MathSciNet  MATH  Google Scholar 

  58. L. Lorentzen, A Convergence Property for Sequences of Linear Fractional Transformations, Continued fractions and orthogonal functions (Loen, 1992), 281–304, Lecture Notes in Pure and Appl. Math., 154, Dekker, New York, 1994.

    Google Scholar 

  59. L. Lorentzen, A convergence question inspired by Stieltjes and by value sets in continued fraction theory, J. Comp. Appl. Math. 65 (1995), 233–251.

    Article  MathSciNet  MATH  Google Scholar 

  60. L. Lorentzen, Convergence of compositions of self-mappings, Ann. Univ. Marie Curie Sklodowska A 53 13 (1999), 121–145.

    MathSciNet  MATH  Google Scholar 

  61. M. Mandell and A. Magnus, On Convergence of Sequences of Linear Fractional Transformations, Math. Zeit. 115 (1970), 11–17.

    Article  MathSciNet  Google Scholar 

  62. J. W. Magnus, Non-Euclidean Tessselations and their Groups, Academic Press, 1974.

  63. J. Milnor, Hyperbolic geometry — the first 150 years, Bull. Amer. Math. Soc. 6 (1982), 9–24.

    Article  MathSciNet  MATH  Google Scholar 

  64. P. J. Nicholls, The Ergodic Theory of Discrete Groups, London Math. Soc. Lectures Notes 143, Camb. Univ. Press, 1989.

  65. J. F. Paydon and H. S. Wall, The continued fraction as a sequence of linear transformations, Duke Math. Jour. 9 (1942), 360–372.

    Article  MathSciNet  MATH  Google Scholar 

  66. G. Piranian and W. J. Thron, Convergence properties of sequences of linear fractional transformations, Michigan Math. J. 4 (1957), 129–135.

    Article  MathSciNet  MATH  Google Scholar 

  67. O. Perron, Die Lehre von den Kettenbrüchen, Band I, Teubner, Stuttgart, 1954.

    MATH  Google Scholar 

  68. O. Perron, Die Lehre von den Kettenbrüchen, Band II, Teubner, Stuttgart, 1957.

    MATH  Google Scholar 

  69. I. R. Porteous, Topological Geometry, Van Nostrand, 1969.

  70. J. G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts 149, Springer-Verlag, 1994.

  71. D. E. Roberts, On a representation of vector continued fractions, J. Comput. Appl. Math. 105 (1999), 453–466.

    Article  MathSciNet  MATH  Google Scholar 

  72. H. Schwerdtfeger, Moebius transformations and continued fractions, Bull. Amer. Math. Soc. 52 (1946), 307–309.

    Article  MathSciNet  MATH  Google Scholar 

  73. T. J. Stieltjes, Recherches surles fractions continues, Ann. Fac. Sci. Toulouse, 8J (1894), 1–122; 9A (1894), 1–47; Oeuvres, 2, 402–566.

    Article  MathSciNet  Google Scholar 

  74. N. Steinmetz, Rational Iteration, De Gruyter Studies in Mathematics 16, de Gruyter, 1993.

  75. W. J. Thron, Convergence regions for continued fractions and other infinite processes, Amer. Math. Monthly 68 (1961), 734–750.

    Article  MathSciNet  MATH  Google Scholar 

  76. W. J. Thron, Convergence of Sequences of Linear Fractional transformations and of Continued Fractions, J. Indian Math. Soc. 27 (1963), 103–127.

    MathSciNet  MATH  Google Scholar 

  77. W. J. Thron and H. Waadeland, Convergence questions for limit periodic continued fractions, Rocky Mountain J. Math. 11 (1981), 641–657.

    Article  MathSciNet  MATH  Google Scholar 

  78. W. J. Thron and H. Waadeland, Modifications of continued fractions, a survey, Analytic theory of continued fractions (Loen, 1981), 38–66, Lecture Notes in Math.. 932, Springer, Berlin-New York, 1982.

    Google Scholar 

  79. W. J. Thron, Continued fraction identities derived from the invariance of the crossratio under l.f.t., Analytic theory of continued fractions, III (Redstone, CO, 1988), 124–134, Lecture Notes in Math., 1406, Springer, Berlin, 1989.

    Google Scholar 

  80. H. Waadeland, Tales about tails, Proc. Amer. Math. Soc. 90 (1984), 57–64.

    Article  MathSciNet  MATH  Google Scholar 

  81. M. Wada, Conjugacy invariants of Möbius transformations, Complex Variables Theory Appl. 15 (1990), 125–133.

    Article  MathSciNet  MATH  Google Scholar 

  82. H. S. Wall, Continued fractions and cross-ratio groups of Cremona transformations, Bull. Amer. Math. Soc. 40 (1934), 587–592.

    Article  MathSciNet  Google Scholar 

  83. H. S. Wall, Analytic Theory of Continued Fractions, Chelsea Pub. Co., 1948.

  84. P. Waterman, Möbius transformations in several dimensions, Adv. Math. 101 (1993), 87–113.

    Article  MathSciNet  MATH  Google Scholar 

  85. J. B. Wilker, Inversive geometry, in: The Geometric Vein, eds. C. Davis, B. Grünbaum and F. A. Scherk, Springer-Verlag, 1981, 379–442.

  86. P. Wynn, Continued fractions whose coefficients obey a non-commutative law of multiplication, Arch. Rational Mech. Anal. 12 (1963), 273–312.

    Article  MathSciNet  MATH  Google Scholar 

  87. P. Wynn, Vector continued fractions, Linear Algebra Appl. 1 (1968), 357–395.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan F. Beardone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beardone, A.F. Continued Fractions, Discrete Groups and Complex Dynamics. Comput. Methods Funct. Theory 1, 535–594 (2001). https://doi.org/10.1007/BF03321006

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321006

Keywords

2000 MSC

Navigation