Skip to main content
Log in

Abstract

A heuristic principle attributed to André Bloch says that a family of holomorphic functions is likely to be normal if there are no non-constant entire functions with this property. We discuss this principle and survey recent results that have been obtained in connection with it. We pay special attention to properties related to exceptional values of derivatives and existence of fixed points and periodic points, but we also discuss some other instances of the principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ahlfors, Sur une généralisation du théorème de Picard, C. R. Acad. Sci. Paris 194 (1932), 245–247; Collected Papers, Birkhäuser, Boston, Basel, Stuttgart, 1982, Vol. I, 145–147.

    Google Scholar 

  2. L. Ahlfors, Zur Theorie der Überlagerungsflächen, Acta Math. 65 (1935), 157–194; Collected Papers, Vol. I, 214–251.

    Article  MathSciNet  Google Scholar 

  3. I. N. Baker, Fixpoints of polynomials and rational functions, J. London Math. Soc. 39 (1964), 615–622.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Bargmann and W. Bergweiler, Periodic points and normal families, Proc. Amer. Math. Soc. 129 (2001), 2881–2888.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. F. Beardon, Iteration of Rational Functions, Springer, New York, Berlin, Heidelberg, 1991.

  6. W. Bergweiler, Periodic points of entire functions: proof of a conjecture of Baker, Complex Variables Theory Appl. 17 (1991), 57–72.

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Bergweiler, Periodische Punkte bei der Iteration ganzer Funktionen, Habilitationsschrift, Rheinisch-Westfälische Techn. Hochsch., Aachen 1991.

    Google Scholar 

  8. W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N. S.) 29 (1993), 151–188.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Bergweiler, A new proof of the Ahlfors five islands theorem, J. Analyse Math. 76 (1998), 337–347.

    Article  MATH  MathSciNet  Google Scholar 

  10. W. Bergweiler, The role of the Ahlfors five islands theorem in complex dynamics, Conform. Geom. Dyn. 4 (2000), 22–34.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Bergweiler, Normality and exceptional values of derivatives, Proc. Amer. Math. Soc. 129 (2001), 121–129.

    Article  MATH  MathSciNet  Google Scholar 

  12. —, Quasinormal families and periodic points, in: M. Agranovsky, L. Karp and D. Shoikhet (eds.), Complex Analysis and Dynamical Systems II, Nahariya, 2003, Contemp. Math. 382 (2005), 55–63.

  13. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), 355–373.

    Article  MATH  MathSciNet  Google Scholar 

  14. W. Bergweiler and J. K. Langley, Nonvanishing derivatives and normal families, J. Analyse Math. 91 (2003), 353–367.

    Article  MATH  MathSciNet  Google Scholar 

  15. W. Bergweiler and J. K. Langley, Multiplicities in Hayman’s alternative, J. Australian Math. Soc. 78 (2005), 37–57.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Bloch, La conception actuelle de la théorie des fonctions entières et méromorphes, Enseignement Math. 25 (1926), 83–103.

    MATH  Google Scholar 

  17. A. Bloch, Les fonctions holomorphes et méromorphes dans le cercle-unité, Gauthiers-Villars, Paris, 1926.

    MATH  Google Scholar 

  18. A. Bloch, Les syst`emes de fonctions holomorphes a variétés linéaires lacunaires, Ann. École Norm. Sup. 43 (1926), 309–362.

    MATH  MathSciNet  Google Scholar 

  19. A. Bloch, Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l’uniformisation, Ann. Fac. Sci. Univ. Toulouse (3) 17 (1926), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Bonk and J. Heinonen, Quasiregular mappings and cohomology, Acta Math. 186 (2001), 219–238.

    Article  MATH  MathSciNet  Google Scholar 

  21. É. Borel, Sur les zéros des fonctions entières, Acta Math. 20 (1897), 357–396.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Brüggemann, Proof of a conjecture of Frank and Langley concerning zeros of meromorphic functions and linear differential polynomials, Analysis 12 (1992), 5–30.

    MATH  MathSciNet  Google Scholar 

  23. F. Bureau, Sur quelques propriétés des fonctions uniformes au voisinage d’un point singulier essentiel isolé, C. R. Acad. Sci. Paris 192 (1931), 1350–1352.

    Google Scholar 

  24. F. Bureau, Mémoire sur les fonctions uniformes à point singulier essentiel isolé, Mém. Soc. Roy. Sci. Liége (3) 17 no. 3 (1932), 1–52.

    Google Scholar 

  25. F. Bureau, Analytic Functions and their Derivatives, Mém. Cl. Sci., Coll. Octavo (3) 7, Acad. Roy. Belgique, Brussels, 1997.

    Google Scholar 

  26. C. Carathéodory, Sur quelques généralisations du théorème de M. Picard, C. R. Acad. Sci. Paris 141 (1905), 1213–1215.

    Google Scholar 

  27. H. Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. École Norm. Sup. 45 (1928), 255–346.

    MATH  MathSciNet  Google Scholar 

  28. H. Cartan and J. Ferrand, The case of André Bloch, Math. Intelligencer 10 (1988), 23–26.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. Chang and M. Fang, Normal families and fixed points, J. Anal. Math. 95 (2005), 389–395.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Chen and M. Fang, On the value distribution of fnf′, Sci. China, Ser. A 38 (1995), 789–798.

    MATH  MathSciNet  Google Scholar 

  31. H.-H. Chen and Y.-X. Gu, Improvement of Marty’s criterion and its application, Sci. China, Ser. A 36 (1993), 674–681.

    MATH  MathSciNet  Google Scholar 

  32. Z.H. Chen, Normality of families of meromorphic functions with multiple valued derivatives (in Chinese), Acta Math. Sinica 30 (1987), 97–105.

    MATH  MathSciNet  Google Scholar 

  33. C.-T. Chuang, Sur les fonctions holomorphes dans le cercle unité, Bull. Soc. Math. France 68 (1940), 11–41.

    MathSciNet  Google Scholar 

  34. C.-T. Chuang, Normal Families of Meromorphic Functions, World Scientific, Singapore, 1993.

    Book  MATH  Google Scholar 

  35. E. F. Clifford, Two new criteria for normal families, Comput. Methods Funct. Theory 5 (2005), 65–76.

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Clunie, On integral and meromorphic functions, J. London Math. Soc. 37 (1962), 17–27.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Clunie, On a result of Hayman, J. London Math. Soc. 42 (1967), 389–392.

    Article  MATH  MathSciNet  Google Scholar 

  38. J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment. Math. Helv. 40 (1965/66), 117–148.

    Article  MathSciNet  Google Scholar 

  39. D. Drasin, Normal families and the Nevanlinna theory, Acta Math. 122 (1969), 231–263.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Eremenko, A counterexample to Cartan’s conjecture on holomorphic curves omitting hyperplanes, Proc. Amer. Math. Soc. 124 (1996), 3097–3100.

    Article  MATH  MathSciNet  Google Scholar 

  41. A. Eremenko, Holomorphic curves omitting five planes in projective space, Amer. J. Math. 118 (1996), 1141–1151.

    Article  MATH  MathSciNet  Google Scholar 

  42. A. Eremenko, Bloch radius, normal families and quasiregular mappings, Proc. Amer. Math. Soc. 128 (2000), 557–560.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Essén and S. Wu, Fix-points and a normal family of analytic functions, Complex Variables Theory Appl. 37 (1998), 171–178.

    Article  MATH  MathSciNet  Google Scholar 

  44. M. Essén and S. Wu, Repulsive fixpoints of analytic functions with applications to complex dynamics, J. London Math. Soc. (2) 62 (2000), 139–148.

    Article  MATH  MathSciNet  Google Scholar 

  45. P. Fatou, Sur l’itération des fonctions transcendantes entières, Acta Math. 47 (1926), 337–360.

    Article  MATH  MathSciNet  Google Scholar 

  46. L. Fejér, Über die Wurzel vom kleinsten absoluten Betrag einer algebraischen Gleichung, Math. Ann. 65 (1908), 413–423.

    Article  MATH  MathSciNet  Google Scholar 

  47. G. Frank, Eine Vermutung von Hayman uber Nullstellen meromorpher Funktionen, Math. Z. 149 (1976), 29–36.

    Article  MATH  MathSciNet  Google Scholar 

  48. G. Frank and S. Hellerstein, On the meromorphic solutions of nonhomogeneous linear differential equations with polynomial coefficients, Proc. London Math. Soc. (3) 53 (1986), 407–428.

    Article  MATH  MathSciNet  Google Scholar 

  49. G. Frank and W. Schwick,Meromorphe Funktionen, die mit einer Ableitung drei Werte teilen, Results Math. 22 (1992), 679–684.

    MATH  MathSciNet  Google Scholar 

  50. G. Frank and W. Schwick, A counterexample to the generalized Bloch principle, New Zealand J. Math. 23 (1994), 121–123.

    MATH  MathSciNet  Google Scholar 

  51. M. Fang and L. Zalcman, A note on normality and shared values, J. Aust. Math. Soc. 76 (2004), 141–150.

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Grahl, Some applications of Cartan’s theorem to normality and semiduality of gap power series, J. Anal. Math. 82 (2000), 207–220.

    Article  MATH  MathSciNet  Google Scholar 

  53. J. Grahl, A short proof of Miranda’s theorem and some extensions using Zalcman’s lemma, J. Anal. 11 (2003), 105–113.

    MATH  MathSciNet  Google Scholar 

  54. Y. X. Gu, A criterion for normality of families of meromorphic functions (in Chinese), Sci. Sinica Special Issue 1 on Math. (1979), 267–274.

  55. W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math. (2) 70 (1959), 9–42.

    Article  MATH  MathSciNet  Google Scholar 

  56. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

    MATH  Google Scholar 

  57. W. K. Hayman, Research Problems in Function Theory, Athlone Press, London, 1967.

    MATH  Google Scholar 

  58. W. K. Hayman, Value distribution and A.P. gaps, J. London Math. Soc. (2) 28 (1983), 327–338.

    Article  MATH  MathSciNet  Google Scholar 

  59. G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser, Basel, Boston, Stuttgart, 1985.

    MATH  Google Scholar 

  60. M. Kisaka, On some exceptional rational maps, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 35–38.

    Article  MATH  MathSciNet  Google Scholar 

  61. J. K. Langley, Proof of a conjecture of Hayman concerning f and f″, J. London Math. Soc. (2) 48 (1993), 500–514.

    Article  MATH  MathSciNet  Google Scholar 

  62. J. K. Langley, On second order linear differential polynomials, Result. Math. 26 (1994), 51–82.

    MATH  MathSciNet  Google Scholar 

  63. O. Lehto, Distribution of values and singularities of analytic functions, Ann. Acad. Sci. Fenn., Ser. A. 249/3 (1957).

  64. O. Lehto, The spherical derivative of meromorphic functions in the neighbourhood of an isolated singularity, Comment. Math. Helv. 33 (1959), 196–205.

    Article  MATH  MathSciNet  Google Scholar 

  65. O. Lehto and K. I. Virtanen, On the behavior of meromorphic functions in the neighbourhood of an isolated singularity, Ann. Acad. Sci. Fenn., Ser. A. 240 (1957).

  66. O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, Springer, Berlin, Heidelberg, New York, 1973.

    Book  MATH  Google Scholar 

  67. A. J. Lohwater and C. Pommerenke, On normal meromorphic functions, Ann. Acad. Sci. Fenn., Ser. A 550 (1973).

  68. J. Milnor, Dynamics in One Complex Variable, Vieweg, Braunschweig, Wiesbaden, 1999.

    MATH  Google Scholar 

  69. D. Minda, A heuristic principle for a nonessential isolated singularity, Proc. Amer. Math. Soc. 93 (1985), 443–447.

    Article  MATH  MathSciNet  Google Scholar 

  70. R. Miniowitz, Normal families of quasimeromorphic mappings, Proc. Amer. Math. Soc. 84 (1982), 35–43.

    Article  MATH  MathSciNet  Google Scholar 

  71. C. Miranda, Sur une nouveau critère de normalité pour les familles de fonctions holomorphes, Bull. Soc. Math. France 63 (1935), 185–196.

    MathSciNet  Google Scholar 

  72. P. Montel, Sur les suites infinies des fonctions, Ann. École Norm. Sup. 24 (1907), 233–334.

    MATH  MathSciNet  Google Scholar 

  73. P. Montel, Leçons sur les familles normales des fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927.

    Google Scholar 

  74. E. Mues, Über ein Problem von Hayman, Math. Z. 164 (1979), 239–259.

    Article  MATH  MathSciNet  Google Scholar 

  75. E. Mues and N. Steinmetz, Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen, Manuscripta Math. 29 (1979), 195–206.

    Article  MATH  MathSciNet  Google Scholar 

  76. T. Murai, Gap series, in: Y. Komatu, K. Niino and C.-C. Yang (eds.), Analytic Functions of one Complex Variable, Pitman Res. Notes. Math. Ser. 212, John Wiley, New York, 1989, 149–177.

    Google Scholar 

  77. Z. Nehari, A generalization of Schwarz’ lemma, Duke Math. J. 14 (1947), 1035–1049.

    Article  MATH  MathSciNet  Google Scholar 

  78. R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367–391.

    Article  MATH  MathSciNet  Google Scholar 

  79. R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthiers-Villars, Paris, 1929.

    MATH  Google Scholar 

  80. R. Nevanlinna, Eindeutige analytische Funktionen, Springer, Berlin, Göttingen, Heidelberg, 1953.

    Book  MATH  Google Scholar 

  81. S. Nevo and X. Pang, Quasinormality of order 1 for families of meromorphic functions, Kodai Math. J. 27 (2004), 152–163.

    Article  MATH  MathSciNet  Google Scholar 

  82. S. Nevo, X. Pang and L. Zalcman, Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros, Electron. Res. Announc. Amer. Math. Soc., to appear.

  83. X. Pang, Bloch’s principle and normal criterion, Sci. China, Ser. A 32 (1989), 782–791.

    MATH  MathSciNet  Google Scholar 

  84. X. Pang,, On normal criterion of meromorphic functions, Sci. China, Ser. A 33 (1990), 521–527.

    MATH  MathSciNet  Google Scholar 

  85. X. Pang, Shared values and normal families, Analysis 22 (2002), 175–182.

    MATH  Google Scholar 

  86. X. Pang, S. Nevo and L. Zalcman, Quasinormal families of meromorphic functions, Rev. Mat. Iberoamericana 21 (2005), 249–262.

    Article  MATH  MathSciNet  Google Scholar 

  87. X. Pang and L. Zalcman, On theorems of Hayman and Clunie, New Zealand J. Math. 28 no.1 (1999), 71–75.

    MATH  MathSciNet  Google Scholar 

  88. X. Pang and L. Zalcman, Normal families and shared values, Bull. London Math. Soc. 32 (2000), 325–331.

    Article  MATH  MathSciNet  Google Scholar 

  89. X. Pang and L. Zalcman, Normality and shared values, Ark. Mat. 38 (2000), 171–182.

    Article  MATH  MathSciNet  Google Scholar 

  90. G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzereihen, Math. Z. 29 (1929), 549–640; Collected Papers, Vol. 1: Singularities of analytic functions, MIT Press, Cambridge, London, 1974, 363–454.

    Article  MATH  MathSciNet  Google Scholar 

  91. Ch. Pommerenke, Normal functions, in: Proceedings of the NRL conference on classical function theory, U. S. Government Printing Office, Washington, D. C., 1970, 77–93.

    Google Scholar 

  92. S. Rickman, On the number of omitted values of entire quasiregular mappings, J. Analyse Math. 37 (1980), 100–117.

    Article  MATH  MathSciNet  Google Scholar 

  93. S. Rickman, Quasiregular Mappings, Springer, Berlin, 1993.

    Book  MATH  Google Scholar 

  94. A. Robinson, Metamathematical problems, J. Symbolic Logic 38 (1973), 500–516.

    Article  MATH  MathSciNet  Google Scholar 

  95. R. M. Robinson, A generalization of Picard’s and related theorems, Duke Math. J. 5 (1939), 118–132.

    Article  MathSciNet  Google Scholar 

  96. P. C. Rosenbloom, L’itération des fonctions entières, C. R. Acad. Sci. Paris 227 (1948), 382–383.

    MATH  MathSciNet  Google Scholar 

  97. L. A. Rubel, Four counterexamples to Bloch’s principle, Proc. Amer. Math. Soc. 98 (1986), 257–260.

    MATH  MathSciNet  Google Scholar 

  98. S. Ruscheweyh and L. Salinas, On some cases of Bloch’s principle, Sci. Ser. A 1 (1988), 97–100.

    MATH  MathSciNet  Google Scholar 

  99. S. Ruscheweyh and K.-J. Wirths, Normal families of gap power series, Results Math. 10 (1986), 147–151.

    MATH  MathSciNet  Google Scholar 

  100. W. Saxer, Über die Ausnahmewerte sukzessiver Derivierten, Math. Z. 17 (1923), 206–227.

    Article  MATH  MathSciNet  Google Scholar 

  101. W. Saxer, Sur les valeurs exceptionelles des dériveées successives des fonctions méromorphes, C. R. Acad. Sci. Paris 182 (1926), 831–833.

    MATH  Google Scholar 

  102. J. L. Schiff, Normal Families, Springer, New York, Berlin, Heidelberg, 1993.

    Book  MATH  Google Scholar 

  103. W. Schwick, Normality criteria for families of meromorphic functions, J. Analyse Math. 52 (1989), 241–289.

    Article  MATH  MathSciNet  Google Scholar 

  104. W. Schwick, Sharing values and normality, Arch. Math. (Basel) 59 (1992), 50–54.

    Article  MATH  MathSciNet  Google Scholar 

  105. H. Siebert, Fixpunkte und normale Familien quasiregulärer Abbildungen, Dissertation, University of Kiel, 2004; http://e-diss.uni-kiel.de/diss_1260.

  106. H. Siebert, Fixed points and normal families of quasiregular mappings, J. Analyse Math., to appear.

  107. N. Steinmetz, On the zeros of \((f {(p)}+a_{p-1}f {p-1}+\dots+a_0 f)f\), Analysis 7 (1987), 375–389.

    MATH  MathSciNet  Google Scholar 

  108. N. Steinmetz, Rational Iteration, Walter de Gruyter, Berlin, 1993.

    Book  MATH  Google Scholar 

  109. E. Ullrich, Über die Ableitung einer meromorphen Funktion, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. (1929), 592–608.

    Google Scholar 

  110. G. Valiron, Lectures on the General Theory of Integral Functions, Édouard Privat, Toulouse, 1923; Reprint: Chelsea, New York, 1949.

  111. G. Valiron, Sur les théorèmes des MM. Bloch, Landau, Montel et Schottky, C. R. Acad. Sci. Paris 183 (1926), 728–730.

    MATH  Google Scholar 

  112. G. Valiron, Familles normales et quasi-normales de fonctions méromorphes, Mémorial des Sciences Math. 38, Gauthier-Villars, Paris, 1929.

    Google Scholar 

  113. G. Valiron, Sur les valeurs exceptionelles des fonctions méromorphes et de leurs dérivées, Hermann & Cie, Paris, 1937.

    Google Scholar 

  114. G. Valiron, Des théorèmes de Bloch aux théories d’Ahlfors, Bull. Sci. Math. 73 (1949), 152–162.

    MATH  MathSciNet  Google Scholar 

  115. S. G. Wang and S. J. Wu, Fixpoints of meromorphic functions and quasinormal families (in Chinese), Acta. Math. Sinica 45 (2002), 545–550.

    MATH  Google Scholar 

  116. Y. Wang and M. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica New Ser. 14 (1998), 17–26.

    Article  MATH  MathSciNet  Google Scholar 

  117. G. Xue and X. Pang, A criterion for normality of a family of meromorphic functions (in Chinese), J. East China Norm. Univ., Nat. Sci. Ed. 2 (1988), 15–22.

    MathSciNet  Google Scholar 

  118. L. Yang, Some recent results and problems in the theory of value-distribution, in: W. Stoll (ed.), Proceedings of the Symposium on Value Distribution Theory in Several Complex Variables, Univ. of Notre Dame Press, Notre Dame Math. Lect. 12 (1992), 157–171.

  119. L. Yang and K.-H. Chang, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples. I. Un nouveau critére et quelques applications, Sci. Sinica 14 (1965), 1258–1271.

    MATH  MathSciNet  Google Scholar 

  120. L. Yang and K.-H. Chang, Recherches sur la normalité des familles de fonctions analytiques à des valeurs multiples. II. Généralisations, Sci. Sinica 15 (1966), 433–453.

    MATH  MathSciNet  Google Scholar 

  121. L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly 82 (1975), 813–817.

    Article  MATH  MathSciNet  Google Scholar 

  122. L. Zalcman, On some questions of Hayman, unpublished manuscript, 5 pages, 1994.

  123. L. Zalcman, Normal families: new perspectives, Bull. Amer. Math. Soc. (N. S.) 35 (1998), 215–230.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Bergweiler.

Additional information

Supported by the G.I.F., the German-Israeli Foundation for Scientific Research and Development, Grant G-809-234.6/2003, and by the Alexander von Humboldt Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergweiler, W. Bloch’s Principle. Comput. Methods Funct. Theory 6, 77–108 (2006). https://doi.org/10.1007/BF03321119

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321119

Keywords

2000 MSC

Navigation