Skip to main content
Log in

The Isoperimetric Inequality via Approximation Theory and Free Boundary Problems

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

In this survey paper, we examine the isoperimetric inequality from an analytic point of view. We use as a point of departure the concept of analytic content in approximation theory: this approach reveals ties to overde-termined boundary problems and hydrodynamics. In particular, we look at problems connected to determining the shape of an electrified droplet or equivalently, that of an air bubble in fluid flow. We also discuss the connection with the Schwarz function and quadrature domains. Finally, we survey some known generalizations to higher dimensions and list many open problems that remain. This paper is an expanded version of the plenary talk given by the second author at the fifth CMFT Conference in Joensuu, Finland, in June 2005.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Ahlfors and A. Beurling, Conformal invariants and function theoretic null sets, Acta Math. 83 (1950), 101–129.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Aharonov and H.S. Shapiro, Domains in which analytic functions satisfy quadrature identities, J. Analyse Math. 30 (1976), 39–73.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Alexander, Projections of polynomial hulls, J. Funct. Anal. 3 (1973), 13–19.

    Article  Google Scholar 

  4. C. Bandle, Isoperimetric Inequalities and Applications, Pitman, Boston-London-Melbourne, 1980.

    MATH  Google Scholar 

  5. B. Berge and J. Peseux, Variable focal lens controlled by an external voltage: an application of electrowetting, Eur. Phys. J. E. 3 (2000), 159–163.

    Article  Google Scholar 

  6. V. Bläsjö, The evolution of the isoperimetric problem, Amer. Math. Monthly 112 (2005) no.6, 526–566.

    Article  MathSciNet  Google Scholar 

  7. J. Bliedtner, Approximation by harmonic functions, in: Potential theory-ICPT 94 (Kouty, 1994) de Gruyter, Berlin, 1996, 297–302.

    Google Scholar 

  8. C. Carathéodory and E. Study, Zwei Beweise des Satzes, daβ der Kreis unter allen Figuren gleichen Umfanges den gröβten Inhalt hat, Math. Ann. 58 (1910), 133–140.

    Google Scholar 

  9. T. Carleman, Zur Theorie der Minimalflächen, Math. A. 9 (1921), 154–160.

    MathSciNet  MATH  Google Scholar 

  10. D. Crowdy, Quadrature domains and fluid dynamics, Operator Theory: Advances and Applications 156 (2005), 113–129.

    Article  MathSciNet  Google Scholar 

  11. L. Cummings, S. Richardson and Ben Amar, Models of void electromigration, European J. Appl. Math. 12 (2001) no.2, 97–134.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Davis, The Schwarz Function and its Applications, Carus Math. Monographs no. 17, Math. Assoc. Amer., 1974.

  13. P. Duren, Theory of H p Spaces, Pure and Applied Mathematics, Vol. 38 Academic Press, New York-London, 1970.

  14. P. Ebenfelt, D. Khavinson, and H. S. Shapiro, A free boundary problem related to single layer potentials, Ann. Acad. Sci. Fenn. 27 (2002) fasc.1, 22–46.

    MathSciNet  Google Scholar 

  15. F. Edler, Vervollständigung der Steinerschen elementargeometrischen Beweise für den Satz, daβ der Kreis gröβeren Flächeninhalt besitzt als jede andere Figur gleich groβen Umfanges, Gött. Nachr. (1882), 73.

  16. T. Gamelin, Uniform Algebras, Second Edition, Chelsea Press, 1984.

  17. P. Garabedian, On the shape of electrified droplets, Comm. Pure Appl. Math. 18 (1965), 31–34.

    Article  MathSciNet  Google Scholar 

  18. T. Gamelin and D. Khavinson, The isoperimetric inequality and rational approximation, Amer. Math. Monthly 96 (1989), 18–30.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Gauthier and P. Paramonov, Approximation by harmonic functions in C1-norm, and the harmonic C1-width of compact sets in Rn, (in Russian) Mat. Zametki 53 (1993) no.4, 21–30; translation in: Math. Notes 53 (1993) no.3–4, 373–378.

    MathSciNet  MATH  Google Scholar 

  20. G. Goluzin, Geometric Function Theory of Functions of a Complex Variable, AMS translations of mathematical monographs, vol. 26, 1969.

  21. Yu. A. Gorokhov, Approximation by harmonic functions in the Cm-norm, and the harmonic Cm-capacity of compact sets in ℝn, (in Russian) Mat. Zametki 62 (1997) no.3, 372–382; translation in: Math. Notes 62 (1997) no.3-4, 314–322.

    Article  MathSciNet  Google Scholar 

  22. B. Gustafsson and D. Khavinson, Approximation by harmonic vector fields, Houston J. Math. 20 (1994) no.1, 75–92.

    MathSciNet  MATH  Google Scholar 

  23. B. Gustafsson, and H. S. Shapiro, What is a quadrature domain?, Oper. Theory Adv. Appl. 156 (2005), 1–25.

    Article  MathSciNet  Google Scholar 

  24. R. Hayes and B. Feenstra, Video-speed electronic paper based on electrowetting, Nature 425 (2003), 383–385.

    Article  Google Scholar 

  25. A. Huber, Über Potentiale, welche auf vorgegebenen Mengen verschwinden, Comment. Math. Helv. 43 (1968), 41–50.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Hurwitz, Sur le problème des isopérimètres, C. R. Acad. Sci. Paris 132 (1901), 401–403.

    MATH  Google Scholar 

  27. E. Ince, Ordinary Differential Equations, Longmans, Green and Co., London, New York and Toronto, 1927.

    MATH  Google Scholar 

  28. P. Jones and S. Smirnov, On V. I. Smirnov domains, Ann. Acad. Sci. Fenn. Math. 24 (1999) no.1, 105–108.

    MathSciNet  MATH  Google Scholar 

  29. M. Keldysh and M. Lavrentiev, Sur la représentation conforme des domaines limités par des courbes rectifiables, Ann. Sci. Ecole Norm. Sup. 54 (1937), 1–38.

    MathSciNet  MATH  Google Scholar 

  30. D. Khavinson, Remarks concerning boundary properties of analytic functions of Ep classes, Indiana Math. J. 31 (1982) no.6, 779–787.

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Khavinson, Annihilating measures of the algebra R(X), J. Funct. Anal., 58 (1984) no.2, 175–193.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Khavinson, Symmetry and uniform approximation by analytic functions, Proc. Amer. Math. Soc. 101 (1987) no.3, 475–483.

    Article  MathSciNet  MATH  Google Scholar 

  33. D. Khavinson, On uniform approximation by harmonic functions, Mich. Math. J. 34 (1987), 465–473.

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Khavinson, Duality and uniform approximation by solutions of elliptic equations, in: Contributions to operator theory and its applications (Mesa, AZ, 1987), 129–141, Oper. Theory Adv. Appl., 35, Birkhäuser, Basel, 1988.

    Chapter  Google Scholar 

  35. D. Khavinson, An isoperimetric problem, in: V. P. Khavin and N. K. Nikolski (eds.), Linear and Complex Analysis, Problem Book 3, Part II, Lecture Notes in Math., 1574 (1994), 133-135.

  36. D. Khavinson, A. Solynin and D. Vassilev, Overdetermined boundary value problems, quadrature domains and applications, Comput. Methods Funct. Theory 5 2005 no.1, 19–48.

    MathSciNet  MATH  Google Scholar 

  37. S. Ya. Khavinson, Two papers on extremal problems in complex analysis, Amer. Math. Soc. Transl. (2) 129 (1986).

  38. S. Ya. Khavinson and G. Tumarkin, On the definition of analytic functions of class E p in mulitply-connected domains, (in Russian) Uspehi Mat. Nauk 13 (1958) no.1, 201–206.

    MathSciNet  Google Scholar 

  39. A. A. Kosmodem’yanskii, A converse of the mean value theorem for harmonic functions, (translated from Russian) Math. Surveys 36 (1981) no.5, 159–160.

    Article  MathSciNet  Google Scholar 

  40. E. McLeod, Jr., The explicit solution of a free boundary problem involving surface tension, J. Rational Mech. Anal. 4 (1955), 557–567.

    MathSciNet  MATH  Google Scholar 

  41. L. M. Milne-Thomson, Theoretical Hydrodynamics, Dover Publications, New York, 5th edn., 1974.

    Google Scholar 

  42. L. E. Payne, Some remarks on overdetermined systems in linear elasticity, J. Elasticity 18 (1987) no.2, 181–189.

    Article  MathSciNet  MATH  Google Scholar 

  43. L. E. Payne, Some comments on the past fifty years of isoperimetric inequalities, in: Inequalities (Birmingham, 1987), 143–161, Lecture Notes in Pure and Appl. Math., 129, Dekker, New York, 1991.

    Google Scholar 

  44. L. E. Payne and G. A. Philippin, Some overdetermined boundary value problems for harmonic functions, Z. Angew. Math. Phys. 42 (1991) no.6, 864–873.

    Article  MathSciNet  MATH  Google Scholar 

  45. L. E. Payne and G. A. Philippin, On two free boundary problems in potential theory, J. Math. Anal. Appl. 161 (1991) no.2, 332–342.

    Article  MathSciNet  MATH  Google Scholar 

  46. L. E. Payne and G. A. Philippin, Isoperimetric inequalities in the torsion and clamped membrane problems for convex plane domains, SIAM J. Math. Anal. 14 (1983) no.6, 1154–1162.

    Article  MathSciNet  MATH  Google Scholar 

  47. L. E. Payne and P. W. Schaefer, Some nonstandard problems for the Poisson equation, Quart. Appl. Math. 51 (1993) no.1, 81–90.

    MathSciNet  MATH  Google Scholar 

  48. L. Ragoub and G. A. Philippin, On some second order and fourth order elliptic overdetermined problems, Z. Angew. Math. Phys. 46 (1995) no.2, 188–197.

    Article  MathSciNet  MATH  Google Scholar 

  49. Phillips Research, http://www.azom.com/details.asp?ArticleID=2406.

  50. E. Poletsky, Approximation by harmonic functions, Trans. Amer. Math. Soc. 349 (1997) no.11, 4415–4427.

    Article  MathSciNet  MATH  Google Scholar 

  51. I. I. Privalov, Boundary Properties of Analytic Functions, Moscow, 1941; 2nd ed., 1950; German translatin: Deutscher Verlag, Berlin, 1956.

    Google Scholar 

  52. W. Reichel, Radial symmetry for an electrostatic, a capillarity and some fully non-linear overdetermined problems on exterior domains, Z. Anal. Anwendungen 15 (1996) no.3, 619–635.

    MathSciNet  MATH  Google Scholar 

  53. S. Richardson, Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech. 56 (1972), 609–618.

    Article  MATH  Google Scholar 

  54. E. Schmidt, Uber das isoperimetrische Problem in Raum von n Dimensionen, Math. Z. 44 (1939), 689–788.

    Article  MathSciNet  Google Scholar 

  55. H. Schwarz, Beweis des Satzes, daβ die Kugel kleinere Oberfläche besitzt, als jeder andere Körper gleichen Volumens, Gött. Nachr. (1884), 1–13.

    Google Scholar 

  56. J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal. 43 (1971), 304–318.

    Article  MathSciNet  MATH  Google Scholar 

  57. H. S. Shapiro, The Schwarz Function and its Generalizations to Higher Dimensions, John Wiley & Sons, 1992.

  58. H. S. Shapiro, Remarks concerning domains of Smirnov type, Michigan Math. J. 13 (1966), 341–348.

    Article  MathSciNet  MATH  Google Scholar 

  59. J. Steiner, Einfache Beweise der isoperimetrischen Hauptsätze, J. Reine Angew. Math. 18 (1838), 281–296.

    Article  MATH  Google Scholar 

  60. I. N. Vekua, Generalized Analytic Functions, Pergamon, London, 1962.

    MATH  Google Scholar 

  61. H. Weinberger, Remark on the preceeding paper of Serrin, Arch. Rational Mech. Anal. 43 (1971), 319–320.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Khavinson.

Additional information

The second author gratefully acknowledges support from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bénéteau, C., Khavinson, D. The Isoperimetric Inequality via Approximation Theory and Free Boundary Problems. Comput. Methods Funct. Theory 6, 253–274 (2006). https://doi.org/10.1007/BF03321614

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03321614

Key Words

2000 MSC

Navigation