Skip to main content
Log in

Recent Developments In Harmonic Approximation, With Applications

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A theorem of J.L. Walsh (1929) says that if E is a compact subset of Rn with connected complement and if u is harmonic on a neighbourhood of E, then u can be uniformly approximated on E by functions harmonic on the whole of Rn. In Part I of this article we survey some generalizations of Walsh’s theorem from the period 1980–94. In Part II we discuss applications of Walsh’s theorem and its generalizations to four diverse topics: universal harmonic functions, the Radon transform, the maximum principle, and the Dirichlet problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.U. Arakelian, ‘Uniform and tangential approximation by analytic functions’, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3 (1968), 273–286 (Russian); Amer. Math. Soc. Transi. (2) 122 (1984), 85-97.

    MathSciNet  Google Scholar 

  2. D.H. Armitage and M. Goldstein, ‘Better than uniform approximation on closed sets by harmonic functions with singularities’, Proc. London Math. Soc. (3) 60 (1990), 319–343.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.H. Armitage and M. Goldstein, ‘Nonuniqueness for the Radon transform’, Proc. Amer. Math. Soc. 117 (1993), 175–178.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.H. Armitage and M. Goldstein, ‘Tangential harmonic approximation on relatively closed sets’, Proc. London Math. Soc. (3) 68 (1994), 112–126.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  6. G.D. Birkhoff, ‘Démonstration d’un théorème élémentaire sur les fonctions entières’, C.R. Acad. Sci. Paris 189 (1929), 473–475.

    MATH  Google Scholar 

  7. M. Brelot, ‘Sur la mesure harmonique et le problème de Dirichlet’, Bull. Sci. Math. (2) 69 (1945), 153–156.

    MathSciNet  MATH  Google Scholar 

  8. H. Chen and P.M. Gauthier, ‘A maximum principle for subharmonic and plurisubharmonic functions’, Canad. Math. Bull. 35 (1992), 34–39.

    Article  MathSciNet  MATH  Google Scholar 

  9. S.M. Duios-Ruis, ‘Universal functions and the structure of the space of entire functions’, Soviet Math. Dokl. 30 (1984), 713–716.

    Google Scholar 

  10. B. Fuglede, ‘Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains’, in: Séminaire de théorie du potentiel Paris, No.5, Lecture Notes in Math. 814, Springer-Verlag, Heidelberg, 1980; 97–115.

    Chapter  Google Scholar 

  11. S.J. Gardiner, ‘The Dirichlet problem with noncompact boundary’, Math. Zeit. 213 (1994), 163–170.

    Article  MathSciNet  Google Scholar 

  12. S.J. Gardiner, Harmonic approximation, London Math. Soc. Lecture Notes (to appear).

  13. P.M. Gauthier, ‘Uniform approximation’ in: Complex Potential Theory, ed. P.M. Gauthier, Kluwer, Dordrecht, 1994; 235–271.

    Chapter  Google Scholar 

  14. P.M. Gauthier, M. Goldstein and W.H. Ow, ‘Uniform approximation on unbounded sets by harmonic functions with logarithmic singularities’, Trans. Amer. Soc. 261 (1980), 169–183.

    Article  MathSciNet  MATH  Google Scholar 

  15. P.M. Gauthier, M. Goldstein and W.H. Ow, ‘Uniform approximation on closed sets by harmonic functions with Newtonian singularities’, J. London Math. Soc. (2) 28 (1983), 71–82.

    Article  MathSciNet  MATH  Google Scholar 

  16. P.M. Gauthier, R. Grothmann and W. Hengartner, ‘Asymptotic maximum principles for subharmonic and plurisubharmonic functions’, Canad. J. Math. 40 (1988), 477–486.

    Article  MathSciNet  MATH  Google Scholar 

  17. P.M. Gauthier and W. Hengartner, Approximation uniforme qualitative sur des ensembles non bornés. Séminaire de Mathématiques Supérieures, Press. Univ. Montréal, 1982.

  18. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1977.

    Book  MATH  Google Scholar 

  19. S. Helgason, The Radon transform, Birkhäuser, Boston, 1980.

    MATH  Google Scholar 

  20. L.L. Helms, Introduction to potential theory, Krieger, New York, 1975.

    Google Scholar 

  21. F. Iversen, ‘Recherches sur les fonctions inverses des fonctions méromorphes’, Thèse, Helsingfors, 1914.

    Google Scholar 

  22. R. Nevanlinna, ‘Über eine Erweiterung des Poissonschen Integrals’, Ann. Acad. Sci. Fenn. Ser. A 24, No. 4 (1925), 1–15.

    Google Scholar 

  23. A. Roth, ‘Uniform and tangential approximation by meromorphic functions on closed sets’, Canad. J. Math. 28 (1976), 104–111.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Runge, ‘Zur Theorie der eindeutigen analytischen Funktionen’, Acta Math. 6 (1885), 228–244.

    Google Scholar 

  25. R. Sh. Sahakian, ‘On a maximum principle for subharmonic functions’ (manuscript).

  26. J.L. Walsh, ‘The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions’, Bull. Amer. Math. Soc. (2) 35 (1929), 499–544.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Zalcman, ‘Uniqueness and non-uniqueness for the Radon transform’, Bull. London Math. Soc. 14 (1982), 241–245.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of our friend and colleague, Myron Goldstein, 1935–94.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armitage, D.H., Gauthier, P.M. Recent Developments In Harmonic Approximation, With Applications. Results. Math. 29, 1–15 (1996). https://doi.org/10.1007/BF03322201

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322201

1991 Mathematics Subject Classification

Key words and phrases

Navigation