Skip to main content
Log in

Nonoscillation theory for second order half-linear differential equations in the framework of regular variation

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Criteria are established for nonoscillation of all solutions of the second order half-linear differential equation

$(\mid y^\prime \mid^{\alpha-1}y^\prime)^\prime + q(t)\mid y \mid^{\alpha -1}y = 0,\ \ \ t \geq 0,$
(A)

where α > 0 is a constant and q: [0, ∞) → ℝ is continuous. The criteria are designed to exhibit the role played by the integral of q(t) in guaranteeing the existence of nonoscillatory solutions of (A) in specific classes of regularly varying functions in the sense of Karamata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications 27, Cambridge Univ. Press, 1987.

  2. O. Došly, Oscillation criteria for half-linear second order differential equations, Hiroshima Math. J. 28 (1998), 507–521.

    MathSciNet  MATH  Google Scholar 

  3. O. Došly, Methods of oscillation theory of half-linear second order differential equations, Czechoslovak. Math. J. 50(125) (2000), 657–671.

    MathSciNet  MATH  Google Scholar 

  4. Á. Elbert, A half-linear second order differential equation, Colloquia Math. Soc. Janos Bolyai 30: Qualitative Theory of Differential Equations, Szeged, pp. 153–180 (1979).

  5. Á. Elbert and A. Schneider, Perturbations of the half-linear Euler differential equation, Result. Math. 37 (2000), 56–83.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. C. Howard and V. Marić, Regularity and nonoscillation of solutions of second order linear differential equations, Bull. T. CXIV de Acad. Serbe Sci. et Arts, Classe Sci. mat. nat. Sci. math. 22 (1997), 85–98.

    Google Scholar 

  7. H. C. Howard, V. Marić and Z. Radašin, Asymptotics of nonoscillatory solutions of second order linear differential equations, Zbornik Rad. Prirod.-Mat. Fak. Univ. Novi Sad, Ser. Mat. 20 (1990), 107–116.

    MATH  Google Scholar 

  8. H. B. Hsu and C. C. Yeh, Nonoscillation criteria for second-order half-linear differential equations, Appl. Math. Lett. 8 (1995), 63–70.

    Google Scholar 

  9. H. B. Hsu and C. C. Yeh, Oscillation theorems for second order half-linear differential equations, Appl. Math. Lett. 9 (1996), 71–77.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Jaros and T. Kusano, A Picone-type identity for second order half-linear differential equations, Acta Math. Univ. Comenian. (NS) 68 (1999), 137–151.

    MathSciNet  MATH  Google Scholar 

  11. M. Kitano and T. Kusano, On a class of second order quasilinear ordinary differential equations, Hiroshima Math. J. 25 (1995), 321–355.

    MathSciNet  MATH  Google Scholar 

  12. T. Kusano, Y. Naito and A. Ogata, Strong oscillation and nonoscillation of quasilinear differential equations of second order, Differential Equations and Dynamical Systems 2 (1994), 1–10.

    MathSciNet  MATH  Google Scholar 

  13. T. Kusano and Y. Naito, Oscillation and nonoscillation criteria for second order quasilinear differential equations, Acta Math. Hungar. 76 (1997), 81–99.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. J. Li and C. C. Yeh, Sturmian comparison theorem for half-linear second-order differential equations, Proc. Royal Soc. Edinburgh 125A (1995), 1193–1204.

    Article  MathSciNet  Google Scholar 

  15. H. C. Li and C. C. Yeh, Oscillation of half-linear second order differential equations, Hiroshima Math. J. 25 (1995), 585–594.

    MathSciNet  MATH  Google Scholar 

  16. J. V. Manojlović, Oscillation criteria for second-order half-linear differential equations, Math. Comput. Modelling 30 (1999), 109–119.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Marić, Regular Variation and Differential Equations, Lecture Notes in Mathematics 1726, Springer-Verlag, Berlin-Heidelberg-New York, 2000.

    MATH  Google Scholar 

  18. V. Marić and M. Tomić, A trichotomy of solutions of second order linear differential equations, Zbornik Rad. Prirod.-Mat. Fak. Univ. Novi Sad, Ser. Mat. 14 (1984), 1–11.

    MATH  Google Scholar 

  19. V. Marić and M. Tomić, A classification of solutions of second order linear differential equations by means of regularly varying functions, Publ. Inst. Math. (Beograd) 48(62) (1990), 199–207.

    MathSciNet  Google Scholar 

  20. V. Marić and M. Tomić, Slowly varying solutions of second order linear differential equations, Publ. Inst. Math. (Beograd) 58(72) (1995), 129–136.

    MathSciNet  Google Scholar 

  21. D. D. Mirzov, On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems, J. Math. Anal. Appl. 53 (1976), 418–425.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Seneta, Regularly Varying Functions, Lecture Notes in Mathematics 508, Springer-Verlag, Berlin-Heidelberg-New-York, 1976.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Jaroš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaroš, J., Takaŝi, K. & Tanigawa, T. Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results. Math. 43, 129–149 (2003). https://doi.org/10.1007/BF03322729

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322729

2000 Mathematics Subject Classification

Keywords and phrases

Navigation