Skip to main content
Log in

Uniform proofs of q-Series-product identities

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we give a simple proof of the Jacobi triple product identity by using basic properties of cube roots of unity. Then we give a new proof of the quintuple product identity, the septuple product identity and Winquist’s identity by using the Jacobi triple product identity and basic properties of cube and fifth roots of unity. Furthermore, we derive some new product identities by this uniform method. Later, we give some generalizations of those identities. Lastly, we derive some modular equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Andrews, A simple proof of Jacobi’s triple product identity, Proc. Amer. Math. Soc. 16 (1965), 333–334.

    MathSciNet  MATH  Google Scholar 

  2. G. E. Andrews and B. C. Berndt, Ramanujan’s Lost Notebook, Part I, Springer-Verlag, New York, to appear.

  3. B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  4. B. C. Berndt, Ramanujan’s Notebooks, Part IV, Springer-Verlag, New York, 1994.

    Book  MATH  Google Scholar 

  5. B. C. Berndt, Ramanujan’s Notebooks, Part V, Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  6. S. Bhargava, A simple proof of the quintuple product identity, J. Indian Math. Soc. (N.S.) 61 (1995) 226–228.

    MathSciNet  MATH  Google Scholar 

  7. L. Carlitz and M. V. Subbarao, A simple proof of the quintuple product identity, Proc. Amer. Math. Soc. 32 (1972), 42–44.

    Google Scholar 

  8. L. Carlitz and M. V. Subbarao, On a combinatorial identity of Winquist and its generalization, Duke Math. J. 39 (1972), 165–172.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Chandrasekharan, Elliptic Functions, Springer-Verlag, Berlin Heideberg, 1985.

    MATH  Google Scholar 

  10. R. J. Evans, Theta function identities, J. Math. Anal. Appl. 147 (1990), 97–121.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. A. Ewell, An easy proof of the triple-product identity, Amer. Math. Monthly 88 (1981), 270–272.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. M. Farkas and I. Kra, On the quintuple product identity, Proc. Amer. Math. Soc. 88 (1999), 771–778.

    Article  MathSciNet  Google Scholar 

  13. D. Foata and G.-N. Han, The triple, quintuple and septuple product identities revisited, in The Andrews festschrift: seventeen papers on classical number theory and combinatorics, D. Foata and G.-N. Han, eds., Springer-Verlag, New York, 2001, 323–334.

    Google Scholar 

  14. C. F. Gauss, Hundert Theoreme über die neuen Transscendenten, Werke, Bd. 3, Königlichen Gesell. Wiss., Göttingen, 1876, 461–469.

    Google Scholar 

  15. B. Gordon, Some identities in combinatorial analysis, Quad. J. Math. (Oxford) (2) 12 (1961), 285–290.

    Article  MATH  Google Scholar 

  16. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1983

    Google Scholar 

  17. M. D. Hirschhorn, A generalisation of Winquist’s identity and a conjecture of Ramanujan, J. Indian Math. Soc. 51 (1987), 49–55.

    MathSciNet  MATH  Google Scholar 

  18. M. D. Hirschhorn, A simple proof of an identity of Ramanujan, J. Austral. Math. Soc. Ser. A 34 (1983), 31–35.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, Eratrum Bornträger Regiomonti, 1829; Gesammelte Werke, Erster Band, G. Reimer, Berlin, 1881.

  20. S.-Y. Kang, A new proof of Winquist’s identity, J. Combin. Theory 78 (1997), 313–318.

    Article  MATH  Google Scholar 

  21. R. P. Lewis, A combinatorial proof of the triple product identity, Amer. Math. Monthly 91 (1984), 420–423. [ai]22]_S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.

  22. H. A. Schwarz, Formeln und Lehrsätze zum Gebrauche der Elliptischen Funktionen. Nach Vorlesungen und Aufzeichnungen des Herrn Prof. K. Weierstrass, Zweite Ausgabe, Erste Abteilung, Springer, Berlin, 1893.

  23. G. N. Watson, Theorems stated by Ramanujan (VII): theorems on contiued fractions, J. London Math. Soc. 4 (1929), 231–237.

    Article  MATH  Google Scholar 

  24. H. S. Wilf, The number-theoretic content of the Jacobi triple product identity, in The Andrews festschrift: seventeen papers on classical number theory and combinatorics, D. Foata and G.-N. Han, eds., Springer-Verlag, New York, 2001, 227–229.

    Google Scholar 

  25. L. Winquist, An elementary proof of p(11n + 6) = 0 (mod 11), J. Combin. Theory 6 (1969), 56–59.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarachai Kongsiriwong.

Additional information

The research of the second author was supported by Academic Research Fund R146000027112 from the National University of Singapore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kongsiriwong, S., Liu, ZG. Uniform proofs of q-Series-product identities. Results. Math. 44, 312–339 (2003). https://doi.org/10.1007/BF03322989

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322989

2000 Mathematics Subject Classification

Key words and phrases

Navigation