Skip to main content
Log in

Functional Equations and Distribution Functions

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We consider the functional equation

$$f(t)={1\over b}{\mathop \sum^{b-1}\limits_{\nu=0}}f\Bigg({t-\beta_{\nu}\over a}\Bigg)\ \ \ {\rm for\ all}\ t\in {\rm R},$$

where 0 < a < 1, b in ℕ {1} and −1 = β 0 ≤ β1 ≤ … ≤ βb− 1 =1 are given parameters, ƒ: ℝ → ℝ is the unknown. We show that there is a unique bounded function ƒ which solves (F) and satisfies ƒ(t) = 0 for t < ∼-1/(1 − a), ƒ(t) = 1 for t > 1/(1 − a). This solution can be interpreted as the distribution function of a certain random series. It is known to be either singular or absolutely continuous, but the problem for which parameters it is absolutely continuous is largely open. We collect some previously established partial answers and generalize them. We also point out an interesting connection to the so-called Schilling equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Baron, A. Simon, P. Volkmann, Solutions d’une équation fonctionnelle dans l’espace des distributions tempérées, Preprint.

  2. M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, J. P. Schreiber, Pisot and Salem numbers, Birkhäuser, Basel 1992.

    Book  MATH  Google Scholar 

  3. P. Erdős, On a family of symmetric Bernoulli convolutions, Trans. Amer. Math. Soc. 61 (1939), 974–976.

    Google Scholar 

  4. P. Erdős, On the smoothness properties of a family of Bernoulli convolutions, Amer. J. Math. 62 (1940), 180–186.

    Article  MathSciNet  Google Scholar 

  5. W. Förg-Rob, On a problem of R. Schilling, Math. Pannonica, to appear.

  6. A. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409–432.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. R. Halmos, Measure Theory, Van Nostrand Reinhold, New York 1950.

    MATH  Google Scholar 

  8. H. Helson, Harmonic Analysis, Addison-Wesley, Reading 1983.

    MATH  Google Scholar 

  9. B. Jessen, A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), 48–88.

    Article  MathSciNet  Google Scholar 

  10. M. Kac, Statistical Independence in Probability, Analysis and Number Theory, Wiley 1959

  11. R. Kershner, A. Wintner, On symmetric Bernoulli convolutions, Amer. J. Math. 57 (1935), 541–548.

    Article  MathSciNet  Google Scholar 

  12. J. Morawiec, On bounded solutions of a problem of R. Schilling, Preprint.

  13. S. Paganoni Marzegalli, One-parameter system of functional equations, Aequationes Math. 47 (1994), 50–59.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Schilling, Spatially chaotic strucutres, in: H. Thomas (editor), Nonlinear Dynamics in Solids, Springer, Berlin 1992, 213–241.

    Chapter  Google Scholar 

  15. A. Wintner, On convergent Poisson convolutions, Amer. J. Math. 57 (1935), 827–838.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Borwein.

Additional information

Dedicated to Prof. János Aczél on the occasion of his 70th birthday.

Research supported by NSERC and the Shrum endowment of Simon Fraser University

Research supported by a DFG fellowship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borwein, J.M., Girgensohn, R. Functional Equations and Distribution Functions. Results. Math. 26, 229–237 (1994). https://doi.org/10.1007/BF03323043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323043

AMS (1991) subject classification

Key words

Navigation