Skip to main content

Multichannel nonlinear scattering theory for nonintegrable equations

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 342))

Abstract

We consider a class of nonlinear equations with localized and dispersive solutions; we show that for a ball in some Banach space of initial conditions, the asymptotic behavior (as t → ±∞) of such states is given by a linear combination of a periodic (in time), localized (in space) solution (nonlinear bound state) of the equation and a purely dispersive part (with free dispersion). We also show that given data near a nonlinear bound state of the system, there is a nonlinear bound state of nearby energy and phase, such that the difference between the solution (adjusted by a phase) and the latter disperses to zero. It turns out that in general the time-period (and energy) of the localized part is different for t → ±∞from that for t → −∞.Moreover, the solution acquires an extra constant phase eiγ±.

Alfréd P. Sloan Fellow

Supported in part by NSF Grant #DMS 88-0185

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benjamin, T.B., The stability of solitary waves, Proc. R. Soc. London A328, 1972, p. 153.

    Google Scholar 

  2. Berry, M.V., Quantal phase factors accompanying adiabatic changes, Proc. Roy. Soc. London Ser. A 392, 1984, p. 45.

    Google Scholar 

  3. Berestycki, H. and Lions, P.L., Nonlinear scalar field equations I — Existence of a ground state, Arch. Rat. Mech. Anal. 82, 1983, pp. 313–345.

    Google Scholar 

  4. Cazenave, T., Lions, P.L., Orbital stability of standing waves for some nonlinear Schrödinger equations″, Comm. Math. Phys. 85, 1982, pp. 549–561.

    Google Scholar 

  5. Cohen, A., Kappeler, T., preprint.

    Google Scholar 

  6. Crandall, M., Rabinowitz, P., Bifurcation of simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal. 52, 1973, pp. 161–181.

    Google Scholar 

  7. Cazenave, T., Weissler, F.B., The Cauchy problem for the nonlinear Schrödinger equation in H1, preprint.

    Google Scholar 

  8. Enss, V., Quantum Scattering Theory of Two and Three Body Systems with Potentials of Short and Longe Range in Schrödinger Operators, ed. by S. Graffi, Lecture Notes in Mathematics, 1159, Springer, 1985.

    Google Scholar 

  9. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19, 1967, pp. 1095–1097

    Google Scholar 

  10. Grillakis, M., Shatah, J., and Strauss, W., Stability theory of solitary waves in the presence of symmetry, I, to appear in Jour. Func. Anal.

    Google Scholar 

  11. Ginibre, J. and Velo, G., On a class of nonlinear Schrödinger equations I, II, J. Func. Anal. 32, 1979, pp. 1–71.

    Google Scholar 

  12. Hayashi, N., Nakamitsu, K., Tsutsumi, M., On solutions of the initial value problem for the nonlinear Schrödinger equations, J. Func. Anal., 71, 1987, pp. 218–245

    Google Scholar 

  13. Jensen, A., Kato, T., “Spectral properties of SchrOdinger operators and time decay of the wave functions”, Duke Math. J. 46, 1979. pp. 583–611.

    Google Scholar 

  14. Kato, T., On nonlinear Schrddinger equations, Ann. Inst. Henri Poincaré, Physique Théorique, 46, 1987, pp. 113–129.

    Google Scholar 

  15. Kodama, Y., Ablowitz, M.J., Perturbations of solitons and solitary waves, Stud. in Appl. Math. 64, 1981, pp. 225–245.

    Google Scholar 

  16. Keener, J.P., McLaughlin, D.W., Solitons under perturbations, Phys. Rev. A 16, 1977, pp. 777–790.

    Google Scholar 

  17. Lax, P.D., Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21, 1968, pp. 467–490.

    Google Scholar 

  18. Lions, P.L., in Nonlinear Problems: Present and Future, North Holland Math. Studies 61, A. Bishop, D. Campbell, B. Nicolaenko, eds.

    Google Scholar 

  19. Murata, M., Rate of decay of local energy and spectral properties of elliptic operators, Japan J. Math. 6, 1980, pp. 77–127.

    Google Scholar 

  20. Newell, A.C., Near-integrable systems, nonlinear tunneling and solitons in slowly changing media, in Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform, F. Calogero ed., London: Pitman, 1978, pp. 127–179.

    Google Scholar 

  21. Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Institute Lecture Notes, 1974.

    Google Scholar 

  22. Reed, M., Simon, B., Methods of Mathematical Physics III: Scattering Theory, Academic Press.

    Google Scholar 

  23. Rose, H.A., Weinstein, M.I., On the bound states of the nonlinear Schrödinger equation with a linear potential, Physics D 30, 1988, pp. 207–218.

    Google Scholar 

  24. Strauss, W.A., Dispersion of low energy waves for two conservative equations, Arch. Rat. Mech. Anal. 55. 1974, pp. 86–92.

    Google Scholar 

  25. Strauss, W.A., Existence of solitary waves in higher dimensions, Commun. Math. Phys. 55, 1977. pp. 149–162.

    Google Scholar 

  26. Strauss, W.A., Nonlinear scattering theory at low energy, J. Funct. Anal. 41, 1981, pp. 110–133.

    Google Scholar 

  27. Shatah, J. and Strauss, W., Instability of nonlinear bound states, Comm. Math. Phys. 100, 1985. pp. 173–190.

    Google Scholar 

  28. Sigal, I.M., Soffer, A., The N-particle scattering problem: asymptotic completeness for short range systems, Ann. Math. 126, 1987, pp. 35–108.

    Google Scholar 

  29. Weinstein, M.I., Modulational stability of ground states of nonlinear Schrddinger equations, Siam. J. Math. Anal. 16, #3, 1985. pp. 472–491.

    Google Scholar 

  30. Weinstein, M.I., Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math. 39. 1986, pp. 51–68.

    Google Scholar 

  31. Zakharov, V.E., Shabat, A.B., Exact theory of two-dimensional self focusing and one dimensional self modulation of waves in nonlinear media, Sov. Phys. J.E.T.P. 34, 1972, pp. 62–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Balabane P. Lochak C. Sulem

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Soffer, A., Weinstein, M.I. (1989). Multichannel nonlinear scattering theory for nonintegrable equations. In: Balabane, M., Lochak, P., Sulem, C. (eds) Integrable Systems and Applications. Lecture Notes in Physics, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0035679

Download citation

  • DOI: https://doi.org/10.1007/BFb0035679

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-51615-6

  • Online ISBN: 978-3-540-46714-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics