Skip to main content

Variational theory for the total scalar curvature functional for riemannian metrics and related topics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1365))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Aubin, The scalar curvature, Differential Geometry and Relativity, (Cahen and Flato, eds.), Reidel, Dordrecht 1976.

    Google Scholar 

  2. R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), 661–693.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Berger and D. Ebin, Some decompositions of the space of symmetric tensors on a Riemannian manifold, J. Diff. Geom. 3 (1969), 379–392.

    MathSciNet  MATH  Google Scholar 

  4. A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg 1987.

    Book  MATH  Google Scholar 

  5. L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Preprint 1988.

    Google Scholar 

  6. S.Y. Cheng and S.T. Yau, Differential equations on Riemmanian manifolds and their geometric application, Comm. Pure Appl. Math. 28 (1975), 333–354.

    Article  MathSciNet  MATH  Google Scholar 

  7. H.I. Choi and R. Schoen, The space of minimal embeddings of a surface into a three-dimensional manifold of positive Ricci curvature, Invent. Math. 81 (1985), 387–394.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Fischer and J. Marsden, The manifold of conformally equivalent metrics, Can. J. Math. 29 (1977), 193–209.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo 1983.

    Book  MATH  Google Scholar 

  11. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, Basel, Stuttgart 1984.

    Book  MATH  Google Scholar 

  12. M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Gromov and H.B. Lawson, Positive scalar curvature and the Dirac operator, IHES Publ. Math. 58 (1983), 83–196.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Koiso, On the second derivative of the total scalar curvature, Osaka J. Math. 16 (1979), 413–421.

    MathSciNet  MATH  Google Scholar 

  15. J. Lee and T. Parker, the Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37–81.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Lelong-Ferrand, Transformations conformes et quasiconformes des variétés riemanniennes; applications à la démonstration d'une conjecture de A. Lichnerowicz, C.R. Acad. Sci. Paris 269 (1969), 583–586.

    MathSciNet  MATH  Google Scholar 

  17. P.L. Lions, The concentration-compactness principle in the calculus of variations, Ann. Inst. Henri Poincaré Analyse Nonlinéaire 1 (1984), 223–284.

    MATH  Google Scholar 

  18. M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6 (1972), 247–258.

    MathSciNet  MATH  Google Scholar 

  19. T. Parker and C. Taubes, On Witten's proof of the positive energy theorem, Comm. Math. Phys. 84 (1982), 223–238.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Pohozaev, Eigenfunctions of the equation Δuf(u) = 0, Soviet Math. Dokl. 6 (1965), 1408–1411.

    MathSciNet  Google Scholar 

  21. E. Rodemich, The Sobolev inequalities with best possible constants, Analysis Seminar at the California Institute of Technology, 1966.

    Google Scholar 

  22. J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. Math. 113 (1981), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Schoen, Conformal deformation of a Riemmanian metric to constant scalar curvature, J. Diff. Geom. 20 (1984), 479–495.

    MathSciNet  MATH  Google Scholar 

  24. R. Schoen, The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation, Comm. Pure Appl. Math. 41 (1988), 317–392.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Schoen and S.T. Yau, On the proof of the positive mass conjecture in General Relativity, Comm. Math. Phys. 65 (1979), 45–76.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Schoen and S.T. Yau, Proof of the positive action conjecture in quantum relativity, Phys. Rev. Let. 42 (1979), 547–548.

    Article  MathSciNet  Google Scholar 

  27. R. Schoen and S.T. Yau, Positivity of the total mass of general space-time, Phys. Rev. Let. 43 (1979), 1457–1459.

    Article  MathSciNet  Google Scholar 

  28. R. Schoen and S.T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), 159–183.

    Article  MathSciNet  MATH  Google Scholar 

  29. R. Schoen and S.T. Yau, Conformally flat manifolds, Kleinian groups, and scalar curvature, Invent. Math. 92 (1988), 47–71.

    Article  MathSciNet  MATH  Google Scholar 

  30. L. Simon, Lectures on Geometric Measure Theory, Centre for Mathematical Analysis, Australian National University, 1984.

    Google Scholar 

  31. G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura. Appl. 110 (1976), 353–372.

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 265–274.

    MathSciNet  MATH  Google Scholar 

  33. K. Uhlenbeck, Connections with L p-bounds on curvature, Comm. Math. Phys. 83 (1982), 31–42.

    Article  MathSciNet  MATH  Google Scholar 

  34. E. Witten, A new proof of the positive energy theorem, Comm. Math. Phys. 80 (1981), 381–402.

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka J. Math. 12 (1960), 21–37.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mariano Giaquinta

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag

About this paper

Cite this paper

Schoen, R.M. (1989). Variational theory for the total scalar curvature functional for riemannian metrics and related topics. In: Giaquinta, M. (eds) Topics in Calculus of Variations. Lecture Notes in Mathematics, vol 1365. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0089180

Download citation

  • DOI: https://doi.org/10.1007/BFb0089180

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50727-7

  • Online ISBN: 978-3-540-46075-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics