Skip to main content

Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer

  • Chapter
  • First Online:
Book cover Arithmetic Theory of Elliptic Curves

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1716))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [Ca] Cassels, J.W.S., Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966) 193–291.

    Article  MathSciNet  MATH  Google Scholar 

  • [Co] Coates, J., Infinite descent on elliptic curves with complex multiplication. In: Arithmetic and Geometry, M. Artin and J. Tate, eds., Prog. in Math. 35, Boston: Birkhäuser (1983) 107–137.

    Chapter  Google Scholar 

  • [CW1] Coates, J., Wiles, A., On the conjecture of Birch and Swinnerton-Dyer, Inventiones math. 39 (1977) 223–251.

    Article  MathSciNet  MATH  Google Scholar 

  • [CW2] Coates, J., Wiles, A., On p-adic L-functions and elliptic units. J. Austral. Math. Soc. (ser. A) 26 (1978) 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • [Col] Coleman, R., Division values in local fields, Inventiones math. 53 (1979) 91–116.

    Article  MathSciNet  MATH  Google Scholar 

  • [dS] de Shalit, E., Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Math. 3, Orlando: Academic Press (1987).

    MATH  Google Scholar 

  • [GS] Goldstein, C., Schappacher, N., Séries d’Eisenstein et fonctions L de courbes elliptiques à multiplication complexe, J. für die reine und angew. Math. 327 (1981) 184–218.

    MathSciNet  MATH  Google Scholar 

  • [Gr] Greenberg, R., On the structure of certain Galois groups, Inventiones math. 47 (1978) 85–99.

    Article  MathSciNet  MATH  Google Scholar 

  • [Iw] Iwasawa, K., On Z -extensions of algebraic number fields Annals of Math. (2) 98 (1973) 246–326.

    Article  MathSciNet  MATH  Google Scholar 

  • [Ko] Kolyvagin, V. A., Euler systems. In: The Grothendieck Festschrift (Vol. II), P. Cartier et al., eds., Prog. in Math 87, Boston: Birkhäuser (1990) 435–483.

    Google Scholar 

  • [La] Lang, S., Elliptic Functions, Reading: Addison Wesley (1973).

    MATH  Google Scholar 

  • [PR] Perrin-Riou, B., Arithmétique des courbes elliptiques et théorie d’Iwasawa, Bull. Soc. Math. France, Mémoire Nouvelle série 17 1984.

    Google Scholar 

  • [Ro] Robert, G., Unités elliptiques, Bull. Soc. Math. France, Mémoire 36 (1973).

    Google Scholar 

  • [Ru1] Rubin, K., The main conjecture. Appendix to: Cyclotomic fields I and II, S. Lang, Graduate Texts in Math. 121, New York: Springer-Verlag (1990) 397–419.

    Google Scholar 

  • [Ru2] Rubin, K., The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Inventiones Math. 103 (1991) 25–68.

    Article  MathSciNet  MATH  Google Scholar 

  • [Se] Serre, J.-P., Classes des corps cyclotomiques (d’après K. Iwasawa), Séminaire Bourbaki exposé 174, December 1958, In: Séminaire Bourbaki vol. 5, Paris: Société de France (1995) 83–93.

    Google Scholar 

  • [ST] Serre, J.-P., Tate, J., Good reduction of abelian varieties, Ann. of Math. 88 (1968) 492–517.

    Article  MathSciNet  MATH  Google Scholar 

  • [Sh] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Princeton: Princeton Univ. Press (1971).

    MATH  Google Scholar 

  • [Si] Silverman, J., The arithmetic of elliptic curves, Graduate Texts in Math. 106, New York: Springer-Verlag (1986).

    MATH  Google Scholar 

  • [Ta] Tate, J., Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular functions of one variable IV, Lecture Notes in Math. 476, New York: Springer-Verlag (1975) 33–52.

    Chapter  Google Scholar 

  • [We] Weil, A., Number theory. An approach through history. From Hammurapi to Legendre, Boston: Birkhäuser (1984).

    MATH  Google Scholar 

  • [Wil] Wiles, A., Higher explicit reciprocity laws, Annals of Math. 107 (1978) 235–254.

    Article  MathSciNet  MATH  Google Scholar 

  • [Win] Wintenberger, J.-P., Structure galoisienne de limites projectives d’unités locales, Comp. Math. 42 (1981) 89–103.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Rubin .

Editor information

Carlo Viola

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Rubin, K. (1999). Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer. In: Viola, C. (eds) Arithmetic Theory of Elliptic Curves. Lecture Notes in Mathematics, vol 1716. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0093455

Download citation

  • DOI: https://doi.org/10.1007/BFb0093455

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66546-5

  • Online ISBN: 978-3-540-48160-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics