Skip to main content

Geometry of 2D topological field theories

  • Chapter
  • First Online:
Integrable Systems and Quantum Groups

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 1620))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ablowitz M., Chakravarty S., and Takhtajan L., Integrable systems, self-dual Yang-Mills equations and connections with modular forms, Univ. Colorado Preprint PAM # 113 (December 1991).

    Google Scholar 

  2. Arnol'd V.I., Normal forms of functions close to degenerate critical points. The Weyl groups A k , D k , E k , and Lagrangian singularities, Functional Anal. 6 (1972) 3–25.

    Google Scholar 

  3. Arnol'd V.I., Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976) 557–582.

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnol'd V.I., Indices of singular points of 1-forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth surfaces, Russ. Math. Surv. 34 (1979) 1–42.

    Article  MATH  Google Scholar 

  5. Arnol'd V.I., Gusein-Zade S.M., and Varchenko A.N., Singularities of Differentiable Maps, volumes I, II, Birkhäuser, Boston-Basel-Berlin, 1988.

    Book  MATH  Google Scholar 

  6. Arnol'd V.I., Singularities of Caustics and Wave Fronts, Kluwer Acad. Publ., Dordrecht-Boston-London, 1990.

    Book  MATH  Google Scholar 

  7. van Asch A., Modular forms and root systems, Math. Anal. 222 (1976), 145–170.

    Article  MathSciNet  MATH  Google Scholar 

  8. Aspinwall P.S., Morrison D.R., Topological field theory and rational curves, Comm. Math. Phys. 151 (1993) 245–262.

    Article  MathSciNet  MATH  Google Scholar 

  9. Astashkevich A., and Sadov V., Quantum cohomology of partial flag manifolds, hepth/9401103.

    Google Scholar 

  10. Atiyah M.F., Topological quantum field theories, Publ. Math. I.H.E.S. 68 (1988) 175.

    Article  MathSciNet  MATH  Google Scholar 

  11. Atiyah M.F., and Hitchin N., The Geometry and Dynamics of Magnetic Monopoles, Princeton Univ. Press, Princeton, 1988.

    Book  MATH  Google Scholar 

  12. Balinskii A., and Novikov S., Sov. Math. Dokl. 32 (1985) 228.

    Google Scholar 

  13. Balser W., Jurkat W.B., and Lutz D.A., Birkhoff invariants and Stokes multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48–94.

    Article  MathSciNet  MATH  Google Scholar 

  14. Balser W., Jurkat W.B., and Lutz D.A., On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, SIAM J. Math. Anal. 12 (1981) 691–721.

    Article  MathSciNet  MATH  Google Scholar 

  15. Batyrev V.V., Quantum cohomology rings of toric manifolds, Astérisque 218 (1993), 9–34.

    MathSciNet  MATH  Google Scholar 

  16. Bernstein J.N., and Shvartsman O.V., Chevalley theorem for complex crystallographic group, Funct. Anal. Appl. 12 (1978), 308–310; Chevalley theorem for complex crystallographic groups, Complex crystallographic Coxeter groups and affine root systems, In: Seminar on Supermanifolds, 2, ed. D. Leites, Univ. Stockholm (1986).

    Article  MathSciNet  MATH  Google Scholar 

  17. Bershadsky M., Cecotti S., Ooguri H., and Vafa C., Kodaira—Spencer theory of gravity and exact results for quantum string amplitudes, Preprint HUTP-93/A025, RIMS-946, SISSA-142/93/EP.

    Google Scholar 

  18. Beukers F., and Heckman G., Monodromy for hypergeometric function n F n-1 , Invent. Math. 95 (1989), 325–354.

    Article  MathSciNet  MATH  Google Scholar 

  19. Birkhoff G.D., Singular points of ordinary linear differential equations, Proc. Amer. Acad. 49 (1913), 436–470.

    Article  MATH  Google Scholar 

  20. Birman J., Braids, Links, and Mapping Class Groups, Princeton Univ. Press, Princeton, 1974.

    Google Scholar 

  21. Blok B., and Varchenko A., Topological conformal field theories and the flat coordinates, Int. J. Mod. Phys. A7 (1992) 1467.

    Article  MathSciNet  MATH  Google Scholar 

  22. Bourbaki N., Groupes et Algèbres de Lie, Chapitres 4, 5 et 6 Masson, Paris-New York-Barcelone-Milan-Mexico-Rio de Janeiro, 1981.

    MATH  Google Scholar 

  23. Brezin E., Itzykson C., Parisi G., and Zuber J.-B. Comm. Math. Phys. 59 (1978) 35. Bessis D., Itzykson C., and Zuber J.-B., Adv. Appl. Math. 1 (1980) 109. Mehta M.L., Comm. Math. Phys. 79 (1981) 327; Chadha S., Mahoux G., and Mehta M.L., J. Phys. A14 (1981) 579.

    Article  MathSciNet  Google Scholar 

  24. Brezin E., and Kazakov V, Exactly solvable field theories of closed strings, Phys. Lett. B236 (1990) 144.

    Article  MathSciNet  Google Scholar 

  25. Brieskorn E. Singular elements of semisimple algebraic groups, In: Actes Congres Int. Math., 2, Nice (1970), 279–284.

    Google Scholar 

  26. Candelas P., de la Ossa X.C., Green P.S., and Parkes L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991), 21–74.

    Article  MathSciNet  MATH  Google Scholar 

  27. Cassels J.W., An Introduction to the Geometry of Numbers, Springer, N.Y. etc., 1971.

    MATH  Google Scholar 

  28. Cecotti S. and Vafa C., Topological-antitopological fusion, Nucl. Phys. B367 (1991) 359–461.

    Article  MathSciNet  MATH  Google Scholar 

  29. Cecotti S. and Vafa C., On classification of N=2 supersymmetric theories, Comm. Math. Phys. 158 (1993), 569–644.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ceresole A., D'Auria R., and Regge T., Duality group for Calabi-Yau 2-modulii space, Preprint POLFIS-TH. 05/93, DFTT 34/93.

    Google Scholar 

  31. Chazy J., Sur les équations différentiellles dont l'intégrale générale possède un coupure essentielle mobile, C.R. Acad. Sc. Paris 150 (1910), 456–458.

    MATH  Google Scholar 

  32. Chakravarty S., Private communication, June 1993.

    Google Scholar 

  33. Coxeter H.S.M., Discrete groups generated by reflections, Ann. Math. 35 (1934) 588–621.

    Article  MathSciNet  MATH  Google Scholar 

  34. Coxeter H.S.M., The product of the generators of a finite group generated by reflections, Duke Math. J. 18 (1951) 765–782.

    Article  MathSciNet  MATH  Google Scholar 

  35. Darboux G., Leçons sur les systèmes ortogonaux et les cordonnées curvilignes, Paris, 1897. Egoroff D.Th., Collected papers on differential geometry, Nauka, Moscow (1970) (in Russian).

    Google Scholar 

  36. Date E., Kashiwara M, Jimbo M., and Miwa T., Transformation groups for soliton equations, In: Nonlinear Integrable Systems—Classical Theory and Quantum Theory, World Scientific, Singapore, 1983, pp. 39–119.

    Google Scholar 

  37. Deligne P., and Mumford D., The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. 45 (1969), 75.

    Article  MathSciNet  MATH  Google Scholar 

  38. Di Francesco P., Lesage F., and Zuber J.B., Graph rings and integrable perturbations of N=2 superconformal theories, Nucl. Phys. B408 (1993), 600–634.

    Article  MathSciNet  MATH  Google Scholar 

  39. Di Francesco P., and Itzykson C., Quantum intersection rings, Preprint SPhT 94/111, September 1994.

    Google Scholar 

  40. Dijkgraaf R., A Geometrical Approach to Two-Dimensional Conformal Field Theory, Ph.D. Thesis (Utrecht, 1989).

    Google Scholar 

  41. Dijkgraaf R., Intersection theory, integrable hierarchies and topological field theory, Preprint IASSNS-HEP-91/91, December 1991.

    Google Scholar 

  42. Dijkgraaf R., E. Verlinde, and H. Verlinde, Nucl. Phys. B 352(1991) 59; Notes on topological string theory and 2D quantum gravity, Preprint PUPT-1217, IASSNS-HEP-90/80, November 1990.

    Article  MathSciNet  Google Scholar 

  43. Dijkgraaf R., and Witten E., Nucl. Phys. B 342 (1990) 486.

    Article  MathSciNet  Google Scholar 

  44. Drinfel'd V.G. and Sokolov V.V., J. Sov. Math. 30 (1985) 1975.

    Article  Google Scholar 

  45. Donagi R., and Markman E., Cubics, Integrable systems, and Calabi-Yau threefolds, Preprint (1994).

    Google Scholar 

  46. Douglas M., and Shenker S., Strings in less than one dimension, Nucl. Phys. B335 (1990) 635.

    Article  MathSciNet  Google Scholar 

  47. Dubrovin B., On differential geometry of strongly integrable systems of hydrodynamic type, Funct. Anal. Appl. 24 (1990).

    Google Scholar 

  48. Dubrovin B., Differential geometry of moduli spaces and its application to soliton equations and to topological field theory, Preprint No. 117, Scuola Normale Superiore, Pisa (1991).

    Google Scholar 

  49. Dubrovin B., Hamiltonian formalism of Whitham-type hierarchies and topological Landau-Ginsburg models, Comm. Math. Phys. 145 (1992) 195–207.

    Article  MathSciNet  MATH  Google Scholar 

  50. Dubrovin B., Integrable systems in topological field theory, Nucl. Phys. B 379 (1992) 627–689.

    Article  MathSciNet  Google Scholar 

  51. Dubrovin B., Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993), 539–564.

    Article  MathSciNet  MATH  Google Scholar 

  52. Dubrovin B., Integrable systems and classification of 2-dimensional topological field theories, In “Integrable Systems”, Proceedings of Luminy 1991 conference dedicated to the memory of J.-L. Verdier, Eds. O. Babelon, O. Cartier, Y.Kosmann-Schwarbach, Birkhäuser, 1993.

    Google Scholar 

  53. Dubrovin B., Topological conformal field theory from the point of view of integrable systems In: Proceedings of 1992 Como workshop “Quantum Integrable Field Theories”. Eds. L. Bonora, G.Mussardo, A.Schwimmer, L.Giradello, and M.Martellini, Plenum Press, 1993.

    Google Scholar 

  54. Dubrovin B., Differential geometry of the space of orbits of a Coxeter group, Preprint SISSA-29/93/FM (February 1993).

    Google Scholar 

  55. Dubrovin B., Fokas A. S., and Santini P.M., Integrable functional equations and algebraic geometry, Duke Math. J. (1994).

    Google Scholar 

  56. Dubrovin B., Krichever, I. and Novikov S. Integrable Systems. I. Encyclopaedia of Mathematical Sciences, vol. 4 (1985) 173 Springer-Verlag.

    Article  Google Scholar 

  57. Dubrovin B. and Novikov S.P., The Hamiltonian formalism of one-dimensional systems of the hydrodynamic type and the Bogoliubov-Whitham averaging method. Sov. Math. Doklady 27 (1983) 665–669.

    MATH  Google Scholar 

  58. Dubrovin B. and Novikov S.P., Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory. Russ. Math. Surv. 44:6 (1989) 35–124.

    Article  MathSciNet  MATH  Google Scholar 

  59. Dubrovin B., Novikov S.P., and Fomenko A.T. Modern Geometry, Parts 1–3, Springer Verlag.

    Google Scholar 

  60. Eguchi T., Kanno H., Yamada Y., and Yang S.-K., Topological strings, flat coordinates and gravitational descendants, Phys. Lett. B305 (1993), 235–241; Eguchi T., Yamada Y., and Yang S.-K., Topological field theories and the period integrals, Mod. Phys. Lett. A 8 (1993), 1627–1638.

    Article  MathSciNet  Google Scholar 

  61. Eguchi T., Yamada Y., and Yang S.-K., On the genus expansion in the topological string theory, Preprint UTHEP-275 (May 1994).

    Google Scholar 

  62. Eichler M., and Zagier D., The Theory of Jacobi Forms, Birkhäuser, 1983.

    Google Scholar 

  63. Flaschka H., Forest M.G., and McLaughlin D.W., Comm. Pure Appl. Math. 33 (1980) 739.

    Article  MathSciNet  Google Scholar 

  64. Flaschka H., and Newell A.C., Comm. Math. Phys. 76 (1980) 65.

    Article  MathSciNet  Google Scholar 

  65. Fokas A.S., Ablowitz M.J., On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys. 23 (1982), 2033–2042.

    Article  MathSciNet  MATH  Google Scholar 

  66. Fokas, A.S., Leo R.A., Martina, L., and Soliani, G., Phys. Lett. A115 (1986) 329.

    Article  MathSciNet  Google Scholar 

  67. Frobenius F.G., and Stickelberger L., Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten, J. Reine Angew. Math. 92 (1882).

    Google Scholar 

  68. Gelfand I.M., and Dickey L.A., A Family of Hamilton Structures Related to Integrable Systems, preprint IPM/136 (1978) (in Russian). Adler M., Invent. Math. 50 (1979) 219. Gelfand I.M., and Dorfman I., Funct. Anal. Appl. 14 (1980) 223.

    Google Scholar 

  69. Givental A.B., Sturm theorem for hyperelliptic integrals, Algebra and Analysis 1 (1989), 95–102 (in Russian).

    MathSciNet  Google Scholar 

  70. Givental A.B., Convolution of invariants of groups generated by reflections, and connections with simple singularities of functions, Funct. Anal. 14 (1980) 81–89.

    Article  MathSciNet  MATH  Google Scholar 

  71. Givental A., Kim B., Quantum cohomology of flag manifolds and Toda lattices, Preprint UC Berkeley (December 1993).

    Google Scholar 

  72. Gromov M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307.

    Article  MathSciNet  MATH  Google Scholar 

  73. Gross, D.J., and Migdal A.A., A nonperturbative treatment of two dimensional quantum gravity, Phys. Rev. Lett. 64 (1990) 127.

    Article  MathSciNet  MATH  Google Scholar 

  74. Gurevich A.V., and Pitaevskii L.P., Sov. Phys. JETP 38 (1974) 291; ibid., Sov. Phys. JETP, 93 (1987) 871; JETP Letters 17 (1973) 193. Avilov V., and Novikov S., Sov. Phys. Dokl. 32 (1987) 366. Avilov V., Krichever I., and Novikov S., Sov. Phys. Dokl. 32 (1987) 564.

    Google Scholar 

  75. Halphen G.-H., Sur un systèmes d'équations différentielles, C.R. Acad. Sc. Paris 92 (1881), 1001–1003, 1004–1007.

    Google Scholar 

  76. Hanany A., Oz Y., and Plesser M.R., Topological Landau-Ginsburg formulation and integrable structures of 2d string theory, IASSNS-HEP 94/1.

    Google Scholar 

  77. Hitchin N., Talk at ICTP (Trieste), April, 1993.

    Google Scholar 

  78. Hitchin N., Poncelet polygons and the Painlevé equations, Preprint, February, 1994.

    Google Scholar 

  79. Hosono S., Klemm A., Theisen S., and Yau S.-T., Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces, Preprint HUTMP-94/02, CERN-TH.7303/94, LMU-TPW-94-03 (June 1994).

    Google Scholar 

  80. Hurwitz A., Über die Differentisialglechungen dritter Ordnung, welchen die Formen mit linearen Transformationen in sich genügen, Math. Ann. 33 (1889), 345–352.

    Article  MathSciNet  Google Scholar 

  81. Ince E.L., Ordinary Differential Equations, London-New York etc., Longmans, Green and Co., 1927.

    MATH  Google Scholar 

  82. Its A.R., and Novokshenov V.Yu., The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Mathematics 1191, Springer-Verlag, Berlin 1986.

    MATH  Google Scholar 

  83. Jacobi C.G.J., Crelle J. 36 (1848), 97–112.

    Article  MathSciNet  Google Scholar 

  84. Jimbo M., and Miwa T., Monodromy preserving deformations of linear ordinary differential equations with rational coefficients. II. Physica 2D (1981) 407–448.

    MathSciNet  MATH  Google Scholar 

  85. Kac V.G., and Peterson D., Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. in Math. 53 (1984), 125–264.

    Article  MathSciNet  MATH  Google Scholar 

  86. Kim B., Quantum cohomology of partial flag manifolds and a residue formula for their intersection pairing, Preprint UC Berkeley (May 1994).

    Google Scholar 

  87. Koblitz N., Introduction to Elliptic Curves and Modular Forms, Springer, New York etc., 1984.

    Book  MATH  Google Scholar 

  88. Kodama Y A method for solving the dispersionless KP equation and its exact solutions, Phys. Lett. 129A (1988), 223–226; Kodama Y. and Gibbons J., A method for solving the dispersionless KP hierarchy and its exact solutions, II, Phys. Lett. 135A (1989) 167–170; Kodama Y., Solutions of the dispersionless Toda equation, Phys. Lett. 147A (1990), 477–482.

    Article  MathSciNet  Google Scholar 

  89. Kontsevich M., Funct. Anal. 25 (1991) 50.

    Article  MathSciNet  Google Scholar 

  90. Kontsevich M., Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  91. Kontsevich M., Enumeration of rational curves via torus action, Comm. Math. Phys. 164 (1994) 525–562.

    Article  MathSciNet  Google Scholar 

  92. Kontsevich M., Manin Yu.I., Gromov-Witten classes, quantum cohomology and enumerative geometry, MPI preprint (1994).

    Google Scholar 

  93. Krichever I.M., Integration of nonlinear equations by the methods of algebraic geometry, Funct. Anal. Appl. 11 (1977), 12–26.

    Article  MathSciNet  MATH  Google Scholar 

  94. Krichever I.M., The dispersionless Lax equations and topological minimal models, Commun. Math. Phys. 143 (1991), 415–426.

    Article  MathSciNet  MATH  Google Scholar 

  95. Krichever I.M., The τ-function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math. 47 (1994) 437–475.

    Article  MathSciNet  MATH  Google Scholar 

  96. Lerche W., Generalized Drinfeld-Sokolov hierarchies, quantum rings, and W-gravity, Preprint CERN-TH.6988/93.

    Google Scholar 

  97. Lerche W., Chiral rings and integrable systems for models of topological gravity, Preprint CERN-TH.7128/93.

    Google Scholar 

  98. Lerche W., On the Landau-Ginsburg realization of topological gravities, Preprint CERN-TH.7210/94 (March 1994).

    Google Scholar 

  99. Lerche W., Vafa C., and Warner N.P., Chiral rings in N=2 superconformal theories, Nucl. Phys. B324 (1989), 427–474.

    Article  MathSciNet  Google Scholar 

  100. Li K., Topological gravity and minimal matter, CALT-68-1662, August 1990; Recursion relations in topological gravity with minimal matter, CALT-68-1670, September 1990.

    Google Scholar 

  101. Looijenga E., A period mapping for certain semiuniversal deformations, Compos. Math. 30 (1975) 299–316.

    MathSciNet  MATH  Google Scholar 

  102. Looijenga E., Root systems and elliptic curves, Invest. Math. 38 (1976), 17–32.

    Article  MathSciNet  MATH  Google Scholar 

  103. Looijenga E., Invariant theory for generalized root systems, Invent. Math. 61 (1980), 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  104. Losev A., Descendants constructed from matter field in topological Landau-Ginsburg theories coupled to topological gravity, Preprint ITEP (September 1992).

    Google Scholar 

  105. Losev A.S., and Polyubin I., On connection between topological Landau-Ginsburg gravity and integrable systems, hep-th/9305079 (May, 1993).

    Google Scholar 

  106. Maassarani Z., Phys. Lett. 273B (1992) 457.

    MathSciNet  Google Scholar 

  107. Magnus W., Oberhettinger F., and Soni R.P., Formulas and Theorems for the special Functions of Mathematical Physics, Springer-Verlag, Berlin-Heidelberg-New York, 1966.

    Book  MATH  Google Scholar 

  108. Magri F., J. Math. Phys. 19 (1978) 1156.

    Article  MathSciNet  Google Scholar 

  109. Malgrange B., Équations Différentielles à Coefficients Polynomiaux, Birkhäuser, 1991.

    Google Scholar 

  110. McCoy B.M., Tracy C.A., Wu T.T., J. Math. Phys. 18 (1977) 1058.

    Article  MathSciNet  Google Scholar 

  111. McDuff D., and Salamon D., J-Holomorphic curves and quantum cohomology, Preprint SUNY and Math. Inst. Warwick. (April 1994).

    Google Scholar 

  112. Miller E., The homology of the mapping class group, J. Diff. Geom. 24 (1986), 1. Morita S., Characteristic classes of surface bundles, Invent. Math. 90 (1987), 551. Mumford D., Towards enumerative geometry of the moduli space of curves, In: Arithmetic and Geometry, eds. M. Artin and J. Tate, Birkhäuser, Basel, 1983.

    MathSciNet  MATH  Google Scholar 

  113. Miwa T., Painlevé property of monodromy presereving equations and the analyticity of τ-functions. Publ. RIMS 17 (1981), 703–721.

    Article  MathSciNet  MATH  Google Scholar 

  114. Morrison D.R., Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians, J. Amer. Math. Soc. 6 (1993), 223–247.

    Article  MathSciNet  MATH  Google Scholar 

  115. Nagura M., and Sugiyama K., Mirror symmetry of K3 and torus, Preprint UT-663.

    Google Scholar 

  116. Nakatsu T., Kato A., Noumi M., and Takebe T., Topological strings, matrix integrals, and singularity theory, Phys. Lett. B322 (1994), 192–197.

    Article  MathSciNet  Google Scholar 

  117. Natanzon S., Sov. Math. Dokl. 30 (1984) 724.

    Google Scholar 

  118. Noumi M., Expansions of the solution of a Gauss-Manin system at a point of infinity, Tokyo J. Math. 7:1 (1984), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  119. Novikov S.P. (Ed.), The Theory of Solitons: the Inverse Problem Method, Nauka, Moscow, 1980. Translation: Plenum Press, N.Y., 1984.

    MATH  Google Scholar 

  120. Novikov S.P., and Veselov A.P., Sov. Math. Doklady (1981)

    Google Scholar 

  121. Okamoto K., Studies on the Painlevé equations, Annali Mat. Pura Appl. 146 (1987), 337–381.

    Article  MATH  Google Scholar 

  122. Okubo K., Takano K., and Yoshida S., A connection problem for the generalized hypergeometric equation, Fukcial. Ekvac. 31 (1988), 483–495.

    MathSciNet  MATH  Google Scholar 

  123. Olver P.J., Math. Proc. Cambridge Philos. Soc. 88 (1980) 71.

    Article  MathSciNet  Google Scholar 

  124. Piunikhin S., Quantum and Floer cohomology have the same ring structure, Preprint MIT (March 1994).

    Google Scholar 

  125. Procesi C., and Schwarz G., Inequalities defining orbit spaces, Invent. Math. 81 (1985) 539–554.

    Article  MathSciNet  MATH  Google Scholar 

  126. Rankin R.A., The construction of automorphic forms from the derivatives of a given form, J. Indian Math. Soc. 20 (1956), 103–116.

    MathSciNet  MATH  Google Scholar 

  127. Ruan Y., Tian G., A mathematical theory of quantum cohomology, Math. Res. Lett. 1 (1994), 269–278.

    Article  MathSciNet  MATH  Google Scholar 

  128. Rudakov A.N., Integer valued bilinear forms and vector bundles, Math. USSR Sbornik 180 (1989), 187–194.

    MathSciNet  MATH  Google Scholar 

  129. Sadov V., On equivalence of Floer's and quantum cohomology, Preprint HUTP-93/A027

    Google Scholar 

  130. Saito K., On a linear structure of a quotient variety by a finite reflection group, Preprint RIMS-288 (1979).

    Google Scholar 

  131. Saito K., Yano T., and Sekeguchi J, On a certain generator system of the ring of invariants of a finite reflection group, Comm. in Algebra 8 (4) (1980) 373–408.

    Article  MathSciNet  MATH  Google Scholar 

  132. Saito K., On the periods of primitive integrals. I., Harvard preprint, 1980.

    Google Scholar 

  133. Saito K., Period mapping associated to a primitive form, Publ. RIMS 19 (1983) 1231–1264.

    Article  MathSciNet  MATH  Google Scholar 

  134. Saito K., Extended affine root systems II (flat invariants), Publ. RIMS 26 (1990) 15–78.

    Article  MathSciNet  MATH  Google Scholar 

  135. Sato M., Miwa T., and Jimbo A., Publ. RIMS 14 (1978) 223; 15 (1979) 201, 577, 871; 16 (1980) 531. Jimbo A., Miwa T., Mori Y., Sato M., Physica 1D (1980) 80.

    Article  MathSciNet  Google Scholar 

  136. Satake I., Flat structure of the simple elliptic singularity of type and Jacobi form, hep-th/9307009.

    Google Scholar 

  137. Shcherbak O.P., Wavefronts and reflection groups, Russ. Math. Surv. 43:3 (1988) 149–194.

    Article  MathSciNet  MATH  Google Scholar 

  138. Schlesinger L., Über eine Klasse von Differentsialsystemen beliebliger Ordnung mit festen kritischer Punkten, J. für Math. 141 (1912), 96–145.

    MathSciNet  MATH  Google Scholar 

  139. Slodowy P., Einfache Singularitaten und Einfache Algebraische Gruppen, Preprint, Regensburger Mathematische Schriften 2, Univ. Regensburg (1978).

    Google Scholar 

  140. Spiegelglass M., Setting fusion rings in topological Landau-Ginsburg, Phys. Lett. B274 (1992), 21–26.

    Article  MathSciNet  Google Scholar 

  141. Takasaki K. and Takebe T., SDiff(2) Toda equation—hierarchy, tau function and symmetries, Lett. Math. Phys. 23 (1991), 205–214; Integrable hierarchies and dispersionless limi, Preprint UTMS 94-35.

    Article  MathSciNet  MATH  Google Scholar 

  142. Takhtajan L., Modular forms as tau-functions for certain integrable reductions of the Yang-Mills equations, Preprint Univ. Colorado (March 1992).

    Google Scholar 

  143. Todorov A.N., Global properties of the moduli of Calabi—Yau manifolds-II (Teichmüller theory), Preprint UC Santa Cruz (December 1993); Some ideas from mirror geometry applied to the moduli space of K3, Preprint UC Santa Cruz (April 1994).

    Google Scholar 

  144. Tsarev S., Math. USSR Izvestija 36 (1991); Sov. Math. Dokl. 34 (1985) 534.

    Google Scholar 

  145. Vafa C., Mod. Phys. Lett. A4 (1989) 1169.

    Article  MathSciNet  Google Scholar 

  146. Vafa C., Topological mirrors and quantum rings, in.

    MATH  Google Scholar 

  147. Varchenko A.N. and Ghmutov S.V., Finite irreducible groups, generated by reflections, are monodromy groups of suitable singularities, Func. Anal. 18 (1984) 171–183.

    Article  MATH  Google Scholar 

  148. Varchenko A.N. and Givental A.B., Mapping of periods and intersection form, Funct. Anal. 16 (1982) 83–93.

    Article  MathSciNet  MATH  Google Scholar 

  149. Verlinde E. and Warner N., Phys. Lett. 269B (1991) 96.

    Article  MathSciNet  Google Scholar 

  150. Vornov A.A., Topological field theories, string backgrounds, and homotopy algebras, Preprint University of Pennsylvania (December 1993).

    Google Scholar 

  151. Wall C.T.C., A note on symmetry of singularities, Bull. London Math. Soc. 12 (1980) 169–175; A second note on symmetry of singularities, ibid. Bull. London Math. Soc., 347–354.

    Article  MathSciNet  MATH  Google Scholar 

  152. Wasow W., Asymptotic expansions for ordinary differential equations, Wiley, New York, 1965.

    MATH  Google Scholar 

  153. Whittaker E.T., and Watson G.N., A Course of Modern Analysis, N.Y., AMS Press, 1979.

    MATH  Google Scholar 

  154. Wirthmüller K., Root systems and Jacobi forms, Compositio Math. 82 (1992), 293–354.

    MathSciNet  MATH  Google Scholar 

  155. Witten E., Comm. Math. Phys. 117 (1988) 353; Ibid. Comm. Math. Phys., 118 (1988) 411.

    Article  MathSciNet  Google Scholar 

  156. Witten E., On the structure of the topological phase of two-dimensional gravity, Nucl. Phys. B 340 (1990) 281–332.

    Article  MathSciNet  Google Scholar 

  157. Witten E., Two-dimensional gravity and intersection theory on moduli space, Surv. Diff. Geom. 1 (1991) 243–210.

    Article  MathSciNet  MATH  Google Scholar 

  158. Witten E., Algebraic geometry associated with matrix models of two-dimensional gravity, Preprint IASSNS-HEP-91/74.

    Google Scholar 

  159. Witten E., Lectures on mirror symmetry, In:.

    Google Scholar 

  160. Witten E., On the Kontsevich model and other models of two dimensional gravity, Preprint IASSNS-HEP-91/24.

    Google Scholar 

  161. Witten E., Phases of N=2 theories in two dimensions, Nucl. Phys. B403 (1993), 159–222.

    Article  MathSciNet  MATH  Google Scholar 

  162. Yau S.-T., ed., Essays on Mirror Manifolds, International Press Co., Hong Kong, 1992.

    MATH  Google Scholar 

  163. Yano T., Free deformation for isolated singularity, Sci. Rep. Saitama Univ. A9 (1980), 61–70.

    Google Scholar 

  164. Zakharov, V.E., On the Benney's equations, Physica 3D (1981), 193–202.

    Google Scholar 

  165. Zuber J.-B., On Dubrovin's topological field theories, Preprint SPhT 93/147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mauro Francaviglia Silvio Greco

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Dubrovin, B. (1996). Geometry of 2D topological field theories. In: Francaviglia, M., Greco, S. (eds) Integrable Systems and Quantum Groups. Lecture Notes in Mathematics, vol 1620. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0094793

Download citation

  • DOI: https://doi.org/10.1007/BFb0094793

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60542-3

  • Online ISBN: 978-3-540-47706-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics