Skip to main content

Lectures on the central limit theorem for empirical processes

  • Conference paper
  • First Online:
Probability and Banach Spaces

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1221))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 46.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, K. (1984). Probability inequalities for empirical processes and a law of the iterated logarithm. Ann. Probability 12, 1041–1067.

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexander, K. (1985). The central limit theorem for empirical processes on Vapnik-Červonenkis classes. Ann. Probability, to appear.

    Google Scholar 

  3. Andersen, N. T. (1985). The calculus of non-measurable functions and sets. Aarhus Univ., Math. Inst. Various Publ. Series No. 36.

    Google Scholar 

  4. Andersen, N. T. and Dobrić, V. (1984). The central limit theorem for stochastic processes. Ann. Probability, to appear.

    Google Scholar 

  5. Andersen, N. T. and Dobrić, V. (1985). The central limit theorem for stochastic processes II. To appear.

    Google Scholar 

  6. Andersen, N. T.; Giné, E; Ossiander, M. and Zinn, J. (1986). The central limit theorem for stochastic processes under bracketing conditions. In preparation.

    Google Scholar 

  7. Araujo, A. and Giné, E. (1980). The central limit theorem for real and Banach valued random variables. Wiley, New York.

    MATH  Google Scholar 

  8. Bennett, G. W. (1962). Probability inequalities for the sum of bounded random variables. J. Amer. Statist. Assoc. 57, 33–45.

    Article  MATH  Google Scholar 

  9. Billingsley, P. (1968). Convergence of probability measures. Wiley, New York.

    MATH  Google Scholar 

  10. Csörgö, M.; Csörgö, S.; Horváth, L. and Mason, D. L. (1984). Weighted empirical and quantile processes. Tech. Report Series, Lab. for Res. in Statist. and Prob., No. 24. Carleton U., Ottawa, Canada.

    MATH  Google Scholar 

  11. Dudley, R. M. (1967). The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Functional Analysis 1, 290–330.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dudley, R. M. (1973). Sample functions of the Gaussian process. Ann. Probability 1, 66–103.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dudley, R. M. (1978). Central limit theorems for empirical processes. Ann. Probability 6, 899–929.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dudley, R. M. (1984). A course on empirical processes. Lect. Notes in Math. 1097, 2–142. Springer, Berlin.

    MATH  Google Scholar 

  15. Dudley, R. M. (1985). An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions. Lect. Notes in Math. 1153, 141–178. Springer, Berlin.

    MATH  Google Scholar 

  16. Dudley, R. M. and Philipp, W. (1983). Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. verw. Geb. 62, 509–552.

    Article  MathSciNet  MATH  Google Scholar 

  17. Durst, and Dudley, R. M. (1980). Empirical processes, Vapnik-Červonenkis classes and Poisson processes. Prob. and Math. Statist. (Wroclaw) 1, 109–115.

    MathSciNet  MATH  Google Scholar 

  18. Fernique, X. (1974). Regularité des trajectoires des fonctions aléatoires gaussiennes. Lect. Notes in Math. 480, 1–96, Springer, Berlin.

    MATH  Google Scholar 

  19. Fernique, X. (1978). Continuité et théorème limite central pour les transformées de Fourier des mésures aléatoires du second ordre. Zeits. Wahrs. verw. Geb. 42, 57–66.

    Article  MathSciNet  MATH  Google Scholar 

  20. Fernique, X. (1985). Sur la convergence étroite des mésures gaussiennes. Zeits. Wahrs. verw. Geb. 68, 331–336.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gaenssler, P. (1983). Empirical Processes. Inst. Math. Statist. Lect. Notes, 3.

    Google Scholar 

  22. Giné, E. and Zinn, J. (1984a) Some limit theorems for empirical processes. Ann. Probability 12, 929–989.

    Article  MathSciNet  MATH  Google Scholar 

  23. Giné, E. and Zinn, J. (1984b). Empirical processes indexed by Lipschitz functions. Ann. Probability, to appear.

    Google Scholar 

  24. Giné, E. and Zinn, J. (1985). A remark on the central limit theorem for random measures and processes. Proceedings of the IV-th Vilnius Conference on Prob. Math. Statist. VNU Sci. Press. Utrecht, The Netherlands.

    Google Scholar 

  25. Heinkel, B. (1977). Mésures majorantes et théorème de la limite centrale dans C(S). Zeits. Wahrsch. verw. Geb. 38, 339–351.

    Article  MathSciNet  MATH  Google Scholar 

  26. Heinkel, B. (1983). Majorizing measures and limit theorems for c0-valued random variables. Lect. Notes in Math. 990, 136–149.

    Article  MathSciNet  Google Scholar 

  27. Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52, 159–186.

    MathSciNet  MATH  Google Scholar 

  28. Ibragimov, I. (1979). Sur la regularité des trajectoires des fonctions aléatoires. C. R. Acad. Sci. Paris A 289, 545–547.

    MATH  Google Scholar 

  29. Jain, N. and Marcus, M. B. (1975). Central limit theorems for C(S)-valued random variables. J. Funct. Analysis 19, 216–231.

    Article  MathSciNet  MATH  Google Scholar 

  30. Jain, N. and Marcus, M. B. (1978). Continuity of subgaussian processes. In Probability on Banach Spaces, Adv. in Probability, Vol. 4, pp. 81–196. Dekker, New York.

    Google Scholar 

  31. Kahane, J. P. (1968). Some random series of functions. Heath, Lexington, Massachusetts.

    MATH  Google Scholar 

  32. Kolčinskii, V. I. (1981). On the central limit theorem for empirical measures. Theor. Probability Math. Statist. 24, 71–82 (translat. from Russian).

    MathSciNet  Google Scholar 

  33. Kolmogorov, A. N. (1931). Eine Verallgemeinerung des Laplace-Liapunoffschen Satzes. Izv. Akad. Nauk. SSSR Otdd. Mat. Estest. Nauk, VII Ser., no. 7, 959–962.

    MATH  Google Scholar 

  34. Kolmogorov, A. N. (1933). Über die Grenzwertsätze der Wahrscheinlichkeitsrechnung. Izv. Akad. Nauk SSSR. VII Ser., no. 3, 363–372.

    MATH  Google Scholar 

  35. Kolmogorov, A. N. and Tikhomirov, V. M. (1959). ε-entropy and ε-capacity of sets in function spaces. Uspekhi Mat. Nauk 14 vyp. 2 (86), 3–86. (Amer. Math. Soc. Transl. (Ser. 2) 17 (1961) 277–364).

    MathSciNet  MATH  Google Scholar 

  36. Le Cam, L. (1983a). A remark on empirical processes. In A Festschrift for Erich L. Lehman in honor of his sixty fifth birthday, 305–327. Wadsworth, Belmont, California.

    Google Scholar 

  37. Le Cam, L. (1983b). Manuscript of a forthcoming book.

    Google Scholar 

  38. Ledoux, M. and Talagrand, M. (1984). Conditions d'integrabilité pour les multiplicateurs dans le TLC Banachique. Preprint.

    Google Scholar 

  39. Marcus, M. B. (1981). Weak convergence of the empirical characteristic function. Ann. Probability 9, 194–201.

    Article  MathSciNet  MATH  Google Scholar 

  40. Ossiander, M. (1985). A central limit theorem under metric entropy with L 2-bracketing. Ann. Probability, to appear.

    Google Scholar 

  41. Pisier, G. (1984). Remarques sur les classes de Vapnik-Červonenkis. Ann. Inst. H. Poincaré, Prob. et Statist. 20, 287–298.

    MathSciNet  MATH  Google Scholar 

  42. Pisier, G. and Zinn, J. (1978). On the limit theorems for random variables with values in L p , p ≥ 2. Z. Wahrs. verw. Geb. 41, 289–304.

    Article  MathSciNet  MATH  Google Scholar 

  43. Pollard, D. (1982). A central limit theorem for empirical processes. J. Austral. Math. Soc., Ser. A 33, 235–248.

    Article  MathSciNet  MATH  Google Scholar 

  44. Pollard, D. (1984). Convergence of Stochastic Processes. Springer, Berlin.

    Book  MATH  Google Scholar 

  45. Preston, C. (1972). Continuity properties of some Gaussian processes. Ann. Math. Statist. 43, 285–292.

    Article  MathSciNet  MATH  Google Scholar 

  46. Rhee, W. T. (1985). Central limit theorem and increment conditions. Prob. Statist. Letters, to appear.

    Google Scholar 

  47. Sauer, N. (1972). On the density of families of sets. J. Combin. Theory Ser. A 13, 145–147.

    Article  MathSciNet  MATH  Google Scholar 

  48. Strassen, V. and Dudley, R. M. (1969). The central limit theorem and ε-entropy. Lect. Notes in Math. 89, 224–231. Springer, Berlin.

    MATH  Google Scholar 

  49. Stute, W. (1984). Discussion on “Some limit theorems for empirical processes” by Giné and Zinn. Ann. Probability 12, 997–998.

    Article  MathSciNet  Google Scholar 

  50. Sudakov, V. N. (1971). Gaussian random processes and measures of solid angles in Hilbert spaces. Dokl. Akad. Nauk SSSR 197, 43–45.

    MathSciNet  Google Scholar 

  51. Talagrand, M. (1984). Measurability properties for empirical processes. Ann. Probability, to appear.

    Google Scholar 

  52. Talagrand, M. (1985a). Donsker classes and shattered sets. To appear.

    Google Scholar 

  53. Talagrand, M. (1985b). Donsker classes and random geometry. To appear.

    Google Scholar 

  54. Talagrand, M. (1985c). Continuity of Gaussian processes. In preparation.

    Google Scholar 

  55. Vapnik, V. N. and Červonenkis, A. Ya. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theor. Prob. Appl. 16, 164–280 (translated from Russian).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jesús Bastero Miguel San Miguel

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag

About this paper

Cite this paper

Giné, E., Zinn, J. (1986). Lectures on the central limit theorem for empirical processes. In: Bastero, J., San Miguel, M. (eds) Probability and Banach Spaces. Lecture Notes in Mathematics, vol 1221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0099111

Download citation

  • DOI: https://doi.org/10.1007/BFb0099111

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-17186-7

  • Online ISBN: 978-3-540-47344-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics