Skip to main content
Log in

Fuzzy scalar field theory as matrix quantum mechanics

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the phase diagram of scalar field theory on a three dimensional Euclidean spacetime whose spatial component is a fuzzy sphere. The corresponding model is an ordinary one-dimensional matrix model deformed by terms involving fixed external matrices. These terms can be approximated by multitrace expressions using a group theoretical method developed recently. The resulting matrix model is accessible to the standard techniques of matrix quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Berezin, General concept of quantization, Commun. Math. Phys. 40 (1975) 153 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Madore, The fuzzy sphere, Class. Quant. Grav. 9 (1992) 69 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. H. Grosse, C. Klimčík and P. Prešnajder, Towards finite quantum field theory in noncommutative geometry, Int. J. Theor. Phys. 35 (1996) 231 [hep-th/9505175] [SPIRES].

    Article  MATH  Google Scholar 

  4. H. Steinacker, A non-perturbative approach to non-commutative scalar field theory, JHEP 03 (2005) 075 [hep-th/0501174] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Steinacker, Quantization and eigenvalue distribution of noncommutative scalar field theory, hep-th/0511076 [SPIRES].

  6. D. O’Connor and C. Sämann, Fuzzy scalar field theory as a multitrace matrix model, JHEP 08 (2007) 066 [arXiv:0706.2493] [SPIRES].

    Article  Google Scholar 

  7. D. O’Connor and C. Sämann, A multitrace matrix model from fuzzy scalar field theory, arXiv:0709.0387[SPIRES].

  8. C. Sämann, The multitrace matrix model of scalar field theory on fuzzy CP n, SIGMA 6 (2010) 050 [arXiv:1003.4683] [SPIRES].

    Google Scholar 

  9. X. Martin, A matrix phase for the ϕ4 scalar field on the fuzzy sphere, JHEP 04 (2004) 077 [hep-th/0402230] [SPIRES].

    Article  ADS  Google Scholar 

  10. F. Garcia Flores, D. O’Connor and X. Martin, Simulating the scalar field on the fuzzy sphere, PoS(LAT2005)262 [hep-lat/0601012] [SPIRES].

  11. M. Panero, Numerical simulations of a non-commutative theory: The scalar model on the fuzzy sphere, JHEP 05 (2007) 082 [hep-th/0608202] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Panero, Quantum field theory in a non-commutative space: theoretical predictions and numerical results on the fuzzy sphere, SIGMA 2 (2006) 081 [hep-th/0609205] [SPIRES].

    MathSciNet  Google Scholar 

  13. C.R. Das, S. Digal and T.R. Govindarajan, Finite temperature phase transition of a single scalar field on a fuzzy sphere, Mod. Phys. Lett. A 23 (2008) 1781 [arXiv:0706.0695] [SPIRES].

    ADS  Google Scholar 

  14. F. Garcia Flores, X. Martin and D. O’Connor, Simulation of a scalar field on a fuzzy sphere, Int. J. Mod. Phys. A 24 (2009) 3917 [arXiv:0903.1986] [SPIRES].

    ADS  Google Scholar 

  15. E. Brezin, C. Itzykson, G. Parisi and J.B. Zuber, Planar diagrams, Commun. Math. Phys. 59 (1978) 35 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A. Jevicki and B. Sakita, The quantum collective field method and its application to the planar limit, Nucl. Phys. B 165 (1980) 511 [SPIRES].

    Article  ADS  Google Scholar 

  17. F. Sugino and O. Tsuchiya, Critical behavior in c =1 matrix model with branching interactions, Mod. Phys. Lett. A9 (1994) 3149 [hep-th/9403089] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. S.S. Gubser and I.R. Klebanov, A modified c =1 matrix model with new critical behavior, Phys. Lett. B 340 (1994) 35 [hep-th/9407014] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  19. I.R. Klebanov, Touching random surfaces and Liouville gravity, Phys. Rev. D 51 (1995) 1836 [hep-th/9407167] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. W. Bietenholz, F. Hofheinz and J. Nishimura, Phase diagram and dispersion relation of the non-commutative lambda ϕ4 model in D = 3, JHEP 06 (2004) 042 [hep-th/0404020] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Medina, W. Bietenholz, F. Hofheinz and D. O’Connor, Field theory simulations on a fuzzy sphere: An alternative to the lattice, PoS(LAT2005)263 [hep-lat/0509162] [SPIRES].

  22. J. Medina, W. Bietenholz and D. O’Connor, Probing the fuzzy sphere regularisation in simulations of the 3D λϕ4 model, JHEP 04 (2008) 041 [arXiv:0712.3366] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. C. Iuliu-Lazaroiu, D. McNamee and C. Sämann, Generalized Berezin quantization, Bergman metrics and fuzzy laplacians, JHEP 09 (2008) 059 [arXiv:0804.4555] [SPIRES].

    Article  ADS  Google Scholar 

  24. P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, hep-th/9304011 [SPIRES].

  25. J.A. Shapiro, A test of the collective field method for the N →∞ limit, Nucl. Phys. B 184 (1981) 218 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sämann.

Additional information

ArXiv ePrint:1012.3568

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihl, M., Sachse, C. & Sämann, C. Fuzzy scalar field theory as matrix quantum mechanics. J. High Energ. Phys. 2011, 91 (2011). https://doi.org/10.1007/JHEP03(2011)091

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP03(2011)091

Keywords

Navigation