Skip to main content
Log in

Constructing generalized self-dual strings

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We generalize a recently developed ADHMN-like construction of self-dual string solitons using loop space. In particular, we present two extensions: The first one starts from solutions to the Basu-Harvey equation for the ABJM model, the second one starts from solutions to a corresponding BPS equation in an \( \mathcal{N} = 2 \) supersymmetric deformation of the BLG model. Both constructions yield solutions to the abelian and the nonabelian self-dual string equation transgressed to loop space. These equations might provide an effective description of M2-branes suspended between M5-branes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  2. A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Mukhi and C. Papageorgakis, M2 to D2, JHEP 05 (2008) 085 [arXiv:0803.3218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  6. E. Corrigan and P. Goddard, Construction of instanton and monopole solutions and reciprocity, Ann. Phys. 154 (1984) 253 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P.J. Braam and P. van Baal, Nahm’s transformation for instantons, Commun. Math. Phys. 122 (1989) 267 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  8. W. Nahm, A simple formalism for the BPS monopole, Phys. Lett. B 90 (1980) 413 [SPIRES].

    ADS  Google Scholar 

  9. W. Nahm, All selfdual multi-monopoles for arbitrary gauge groups, presented at Internation summer institute on theoretical physics, August 31–September 11, Freiburg, Germany (1981).

  10. W. Nahm, The construction of all selfdual multi-monopoles by the ADHM method, talk at the Meeting on monopoles in quantum field theory, December 11–15, ICTP, Trieste (1981).

  11. N.J. Hitchin, On the construction of monopoles, Commun. Math. Phys. 89 (1983) 145 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Basu and J.A. Harvey, The M2–M5 brane system and a generalized Nahm’s equation, Nucl. Phys. B 713 (2005) 136 [hep-th/0412310] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. P.S. Howe, N.D. Lambert and P.C. West, The self-dual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Gustavsson, Selfdual strings and loop space Nahm equations, JHEP 04 (2008) 083 [arXiv:0802.3456] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. C. Sämann, Constructing self-dual strings, Commun. Math. Phys. 305 (2011) 513 [arXiv:1007.3301] [SPIRES].

    Article  ADS  MATH  Google Scholar 

  16. S. Kawamoto and N. Sasakura, Open membranes in a constant C-field background and noncommutative boundary strings, JHEP 07 (2000) 014 [hep-th/0005123] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. E. Bergshoeff, D.S. Berman, J.P. van der Schaar and P. Sundell, A noncommutative M-theory five-brane, Nucl. Phys. B 590 (2000) 173 [hep-th/0005026] [SPIRES].

    Article  ADS  Google Scholar 

  18. A. Gustavsson, The non-Abelian tensor multiplet in loop space, JHEP 01 (2006) 165 [hep-th/0512341] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. C. Papageorgakis and C. Sämann, The 3-Lie algebra (2, 0) tensor multiplet and equations of motion on loop space, JHEP 05 (2011) 099 [arXiv:1103.6192] [SPIRES].

    Article  ADS  Google Scholar 

  20. N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. J. Bagger and N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories, Phys. Rev. D 79 (2009) 025002 [arXiv:0807.0163] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  22. S.A. Cherkis and C. Sämann, Multiple M2-branes and generalized 3-Lie algebras, Phys. Rev. D 78 (2008) 066019 [arXiv:0807.0808] [SPIRES].

    ADS  Google Scholar 

  23. C.Sämann and R.J. Szabo, Branes, quantization and fuzzy spheres, PoS(CNCFG2010)005 [arXiv:1101.5987] [SPIRES].

  24. D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220 [hep-th/9608163] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. D. Tsimpis, Nahm equations and boundary conditions, Phys. Lett. B 433 (1998) 287 [hep-th/9804081] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. N.R. Constable, R.C. Myers and O. Tafjord, The noncommutative bion core, Phys. Rev. D 61 (2000) 106009 [hep-th/9911136] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. P. Rossi, Exact results in the theory of nonabelian magnetic monopoles, Phys. Rept. 86 (1982) 317 [SPIRES].

    Article  ADS  Google Scholar 

  28. M. Adler and P. van Moerbeke, Linearization of hamiltonian systems, Jacobi varieties and representation theory, Adv. Math. 38 (1980) 318.

    Article  MATH  Google Scholar 

  29. L. Takhtajan, On foundation of the generalized Nambu mechanics (second version), Commun. Math. Phys. 160 (1994) 295 [hep-th/9301111] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. D. Nogradi, M2-branes stretching between M5-branes, JHEP 01 (2006) 010 [hep-th/0511091] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Pawellek, On a generalization of Jacobi’s elliptic functions and the double sine-Gordon kink chain, arXiv:0909.2026 [SPIRES].

  32. J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Birkhäuser, Boston U.S.A. (2007).

    Google Scholar 

  33. S. Cherkis, V. Dotsenko and C. Sämann, On superspace actions for multiple M2-branes, metric 3-algebras and their classification, Phys. Rev. D 79 (2009) 086002 [arXiv:0812.3127] [SPIRES].

    ADS  Google Scholar 

  34. J. Gomis, D. Rodriguez-Gomez, M. Van Raamsdonk and H. Verlinde, A massive study of M2-brane proposals, JHEP 09 (2008) 113 [arXiv:0807.1074] [SPIRES].

    Article  ADS  Google Scholar 

  35. S. Terashima, On M5-branes in N = 6 membrane action, JHEP 08 (2008) 080 [arXiv:0807.0197] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. K. Hanaki and H. Lin, M2–M5 systems in N = 6 Chern-Simons theory, JHEP 09 (2008) 067 [arXiv:0807.2074] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. V.T. Filippov, n-Lie algebras, Sib. Mat. Zh. 26 (1985) 126.

    MATH  Google Scholar 

  38. P. de Medeiros, J. Figueroa-O’Farrill, E. Mendez-Escobar and P. Ritter, On the Lie-algebraic origin of metric 3-algebras, Commun. Math. Phys. 290 (2009) 871 [arXiv:0809.1086] [SPIRES].

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Sämann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, S., Sämann, C. Constructing generalized self-dual strings. J. High Energ. Phys. 2011, 8 (2011). https://doi.org/10.1007/JHEP10(2011)008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2011)008

Keywords

Navigation