Skip to main content
Log in

Exponential Stability and Uniform Boundedness of Solutions for Nonautonomous Periodic Abstract Cauchy Problems. An Evolution Semigroup Approach

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Let u μ, x, s (., 0) be the solution of the following well-posed inhomogeneous Cauchy Problem on a complex Banach space X

$$\left \{\begin{array}{ll}\dot{u}(t) = A(t)u(t) + e^{i\mu t}x, \quad t > s \\ u(s) = 0. \end{array} \right.$$

Here, x is a vector in Xμ is a real number, q is a positive real number and A(·) is a q-periodic linear operator valued function. Under some natural assumptions on the evolution family \({\mathcal{U} = \{U(t, s): t \geq s\}}\) generated by the family {A(t)}, we prove that if for each μ, each s ≥ 0 and every x the solution u μ, x, s (·, 0) is bounded on R + by a positive constant, depending only on x, then the family \({\mathcal{U}}\) is uniformly exponentially stable. The approach is based on the theory of evolution semigroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt W., Batty C.J.K., Hieber M., Neubrander F.: Vector Valued Laplace transform. Birkhäuser, Basel (2001)

    Google Scholar 

  2. Arshad S., Buşe C., Saierli O.: Connections between exponential stability and boundedness of solutions of a couple of differential time depending and periodic systems. Electron. J. Qualitative Theory Differ. Equ. 90, 1–16 (2011)

    Google Scholar 

  3. Balint, S.: On the Perron–Bellman theorem for systems with constant coefficients, Ann. Univ. Timisoara, vol 21, fasc. 1–2, 3–8 (1983)

  4. Baroun M., Maniar L., Schnaubelt R.: Almost periodicity of parabolic evolution equations with inhomogeneous boundary values. Integr. Equ. Oper. Theory 65(2), 169–193 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buşe C.: On the Perron–Bellman theorem for evolutionary processes with exponential growth in Banach spaces. NZ J. Math. 27, 183–190 (1998)

    MATH  Google Scholar 

  6. Buşe C., Cerone P., Dragomir S.S., Sofo A.: Uniform stability of periodic discrete system in Banach spaces. J. Differ. Equ. Appl. 11(12), 1081–1088 (2005)

    Article  MATH  Google Scholar 

  7. Buşe C., Pogan A.: Individual exponential stability for evolution families of bounded and linear operators. NZ J. Math. 30, 15–24 (2001)

    MATH  Google Scholar 

  8. Chicone, C., Latushkin, Y.: Evolution semigroups in dynamical systems and differential equations. Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, Providence (1999)

  9. Clark S., Latushkin Y., Montgomery-Smith S., Randolph T.: Stability radius and internal versus external stability in banach spaces: an evolution semigroup approach. SIAM J. Control Optim. 38(6), 1757–1793 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corduneanu C.: Almost Periodic Oscilations and Waves. Springer Sciences+Business Media LLC, Berlin (2009)

    Book  Google Scholar 

  11. Daners D., Medina K.P.: Abstract evolution equations, periodic problems and applications. Pitman Research Notes in Mathematics Series, vol. 279. Longman Scientific & Technical, (1992)

  12. Engel K., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  13. Greiner G., Voight J., Wolff P.M.: On the spectral bound of the generator of semigroups of positive operators. J. Oper. Theory 5, 245–256 (1981)

    MATH  Google Scholar 

  14. Howland S.J.: On a theorem of Gearhart. Integral Equ. Oper. Theory 7, 138–142 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang F.: Exponential stability of linear systems in Banach spaces. Chin. Ann. Math. 10, 332–340 (1989)

    MATH  Google Scholar 

  16. Mather J.: Characterization of Anosov diffeomorphisms. Indag. Math. 30, 479–483 (1968)

    MathSciNet  Google Scholar 

  17. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  18. Phong, V.Q.: On stability of C 0-semigroups. Proc. Am. Math. Soc. 129, No. 10, 2871–2879 (2001)

    Google Scholar 

  19. Nguyenm T.L.: On nonautonomous functional differential equations. J. Math. Anal. Appl. 239(1), 158–174 (1999)

    Article  MathSciNet  Google Scholar 

  20. Nguyen T.L.: On the wellposedness of nonautonomous second order Cauchy problems. East-West J. Math. 1(2), 131–146 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Van Minh N., Räbiger F., Schnaubelt R.: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half-line. Integr. Equ. Oper. Theory 32, 332–353 (1998)

    Article  MATH  Google Scholar 

  22. Neubrander F.: Laplace transform and asymptotic behavior of strongly continuous semigroups. Houston Math. J. 12(4), 549–561 (1986)

    MathSciNet  MATH  Google Scholar 

  23. Reghiş M., Buşe C.: On the Perron-Bellman theorem for strongly continuous semigroups and periodic evolutionary processes in Banach spaces. Italian J. Pure Appl. Math. 4, 155–166 (1998)

    MATH  Google Scholar 

  24. Schnaubelt, R.: Well-posedness and asymptotic behavior of non-autonomous linear evolution equations, Evolution equations, semigroups and functional analysis. Progr. Nonlinear Differential Equations Appl., vol. 50. Birkhäuser, Basel, pp. 311–338 (2002)

  25. Stein E.M., Shakarchi R.: Fourier analysis: An introduction. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  26. van Neerven J.M.A.M.: Individual stability of C 0 semigroups with uniformly bounded local resolvent. Semigroup Forum 53(1), 155–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weis L., Wrobel V.: Asymptotic behavior of C 0-semigroups in Banach spaces. Proc. Am. Math. Soc. 124(12), 3663–3671 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wrobel V.: Asymptotic behavior of C 0-semigroups in B-convex spaces. Indiana Univ. Math. J. 38, 101–114 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zabczyk J.: Mathematical Control Theory: An Introduction Systems and Control. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin Buşe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buşe, C., Lassoued, D., Nguyen, T.L. et al. Exponential Stability and Uniform Boundedness of Solutions for Nonautonomous Periodic Abstract Cauchy Problems. An Evolution Semigroup Approach. Integr. Equ. Oper. Theory 74, 345–362 (2012). https://doi.org/10.1007/s00020-012-1993-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1993-5

Mathematics Subject Classification (2010)

Keywords

Navigation