Skip to main content
Log in

New Stable Biorthogonal Spline-Wavelets on the Interval

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we present the construction of new stable biorthogonal spline-wavelet bases on the interval [0, 1] for arbitrary choice of spline-degree. As starting point, we choose the well-known family of compactly supported biorthogonal spline-wavelets presented by Cohen, Daubechies and Feauveau. Firstly, we construct biorthogonal MRAs (multiresolution analysis) on [0, 1]. The primal MRA consists of spline-spaces concerning equidistant, dyadic partitions of [0, 1], the so called Schoenberg-spline bases. Thus, the full degree of polynomial reproduction is preserved on the primal side. The construction, that we present for the boundary scaling functions on the dual side, guarantees the same for the dual side. In particular, the new boundary scaling functions on both, the primal and the dual side have staggered supports. Further, the MRA spaces satisfy certain Jackson- and Bernstein-inequalities, which lead by general principles to the result, that the associated wavelets are in fact L 2([0, 1])-stable. The wavelets however are computed with aid of the method of stable completion. Due to the compact support of all occurring functions, the decomposition and reconstruction transforms can be implemented efficiently with sparse matrices. We also illustrate how bases with complementary or homogeneous boundary conditions can be easily derived from our construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Anderson L., Hall N., Jawerth B., Peters G.: Wavelets on closed subsets of the real line. In: Schumaker, L.L., Webb, G. (eds) Topics in the Theory and Applications of Wavelets., pp. 1–61. Academic Press, Boston (1994)

    Google Scholar 

  3. Barsch, T.: Adaptive Multiskalenverfahren für elliptische partielle Differential-gleichungen—Realisierung, Umsetzung und numerische Ergebnisse. Dissertation. Shaker Verlag (2001)

  4. Carnicer J.M., Dahmen W., Peña J.M.: Local decomposition of refinable spaces. Appl. Comp. Harm. Anal. 3, 127–153 (1996)

    Article  MATH  Google Scholar 

  5. Chui, C.K., Quak, E.: Wavelets on a bounded interval. In: Braess, D., Schumaker, L. (eds.) Numerical Methods of Approximation Theory 9. International Series of Numerical Mathematics 105, pp. 53–75. Birkhäuser (1992)

  6. Cohen A., Daubechies I., Feauveau J.-C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45, 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen A., Daubechies I., Vial P.: Wavelets on the interval and fast wavelet transforms. Appl. Comp. Harm. Anal. 1, 54–81 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahlke S., Fornasier M., Raasch T.: Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27(1), 27–63 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dahlke, S., Fornasier, M., Primbs, M., Raasch, T., Werner, M.: Nonlinear and adaptive frame approximation schemes for elliptic PDEs: theory and numerical experiments. Numer. Methods Partial Differ. Equ. (2008). doi:10.1002/num.20407

  10. Dahmen, W.: Multiscale Analysis, Approximation and Interpolation Spaces. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory VIII, pp. 47–88. World Scientific Publishing Co. (1995)

  11. Dahmen W.: Stability of multiscale transformations. J. Fourier Anal. Appl. 4, 341–362 (1996)

    MathSciNet  Google Scholar 

  12. Dahmen W., Kunoth A., Urban K.: Biorthogonal spline-wavelets on the interval—stability and moment conditions. Appl. Comp. Harm. Anal. 6, 132–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dahmen, W., Kunoth, A., Urban, K.: Wavelets in numerical analysis and their quantitative properties. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 93–130. Vanderbilt University Press (1997)

  14. Dahmen W., Micchelli C.A.: Banded matrices with banded inverses, II: locally finite decomposition of spline spaces. Constr. Appr. 9, 263–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dahmen W., Micchelli C.A.: Using the refinement equation for evaluating integrals of wavelets. SIAM J. Numer. Anal. 30, 507–537 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dahmen W., Prössdorf S., Schneider R.: Wavelet approximation methods for pseudodifferential equations II: matrix compression and fast solution. Adv. Comp. Math. 1, 259–335 (1993)

    Article  MATH  Google Scholar 

  17. Dahmen W., Prössdorf S., Schneider R.: Multiscale methods for pseudo-differential equations. In: Schumaker, L.L., Webb, G. (eds) Recent Advances in Wavelet Analysis, pp. 191. Academic Press, Boston (1993)

    Google Scholar 

  18. Dahmen, W., Prössdorf, S., Schneider, R.: Multiscale methods for pseudo-differential equations on manifolds. In: Wavelet Analysis and its Applications, vol. 5, pp. 385–424. Academic Press, New York (1995)

  19. Dahmen W., Schneider R.: Wavelets on manifolds. I: construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dahmen W., Schneider R.: Composite wavelet basis for operator equations. Math. Comp. 68, 1533–1567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dahmen W., Schneider R.: Wavelets with complementary boundary conditions—function spaces on the cube. Result. Math. 34, 255–293 (1998)

    MATH  MathSciNet  Google Scholar 

  22. Harbrecht, H., Schneider, R.: Wavelets for the fast solution of boundary integral equations. In: Mang, H.A., Rammerstorfer, F.G., Eberhardsteiner, J. (eds.) Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V), July 7–12, 2002, Vienna, Austria. Vienna University of Technology, Austria

  23. Harbrecht H., Schneider R.: Biorthogonal wavelet bases for the boundary element method. Math. Nachr. 269(270), 167–188 (2004)

    Article  MathSciNet  Google Scholar 

  24. Pabel, R.: Waveletmethoden für PDE-basierte elliptische Kontrollprobleme with Dirichlet-Randkontrolle. Diploma Thesis, Universität Bonn (2005)

  25. Primbs, M.: New stable biorthogonal spline-wavelets on the interval—numerical results and new improvement approaches. (Preprint, 2007). http://www.uni-due.de/~hm0029/primbs/Miriam_Primbs.html

  26. Primbs M.: On the computation of Gramian matrices for refinable bases on the interval. Int. J. Wavelets Multiresolut. Inf. Process. 6(3), 459–479 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Primbs, M.: Technical report for the paper: New stable biorthogonal spline-wavelets on the interval. (2007). http://www.uni-duisburg.de/FB11/STAFF/primbs/Miriam_Primbs.html

  28. Primbs M.: The method of stable completion in the classical wavelet context. Result. Math. 53, 391–398 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Raasch, T.: Adaptive wavelet and frame schemes for elliptic and parabolic equations. PhD thesis (Dissertation), Philipps-Universität Marburg (2007)

  30. Schneider, A.: Konstruktion von Multiwavelets und Anwendungen bei adaptiven numerischen Verfahren. Diploma thesis, Philipps-Universität Marburg (2007)

  31. Schneider R.: Multiskalen- und Wavelet-Matrixkompression. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  32. Schumaker L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)

    MATH  Google Scholar 

  33. Villemoes, L.F.: Sobolev regularity of wavelets and stability of iterated filter banks. In: Meyer, Y., Roques, S. (eds.) Progress in Wavelet Analysis and Applications, Proc. Int. Conf. Toulouse 1992, pp. 243–251. Frontieres, Paris (1993)

  34. Villemoes L.F.: Wavelet analysis of refinement equations. SIAM J. Math. Anal. 25, 1433–1460 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  35. Weyrich, N.: Spline wavelets on an interval. Wavelets and Allied Topics, pp. 117–189 (2001)

  36. Williams J.R., Amaratunga K.: A discrete wavelet transform without edge effects using wavelet extrapolation. J. Fourier Anal. Appl. 3, 435–449 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Primbs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Primbs, M. New Stable Biorthogonal Spline-Wavelets on the Interval. Results. Math. 57, 121–162 (2010). https://doi.org/10.1007/s00025-009-0008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-009-0008-6

Mathematics Subject Classification (2000)

Keywords

Navigation