Skip to main content
Log in

On Tight Spans for Directed Distances

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

An extension (V, d) of a metric space (S, μ) is a metric space with \({{S \subseteq V}}\) and \({{d\mid{_S} = \mu}}\) , and is said to be tight if there is no other extension (V, d′) of (S, μ) with d′ ≤ d . Isbell and Dress independently found that every tight extension embeds isometrically into a certain metrized polyhedral complex associated with (S, μ), called the tight span. This paper develops an analogous theory for directed metrics, which are “not necessarily symmetric” distance functions satisfying the triangle inequality. We introduce a directed version of the tight span and show that it has a universal embedding property for tight extensions. Also we introduce a new natural class of extensions, called cyclically tight extensions, and we show that there also exists a certain polyhedral complex having a universal property relative to cyclically tightness. This polyhedral complex coincides with (a fiber of) the tropical polytope spanned by the column vectors of –μ, which was earlier introduced by Develin and Sturmfels. Thus this gives a tight-span interpretation to the tropical polytope generated by a nonnegative square matrix satisfying the triangle inequality. As an application, we prove the following directed version of the tree metric theorem: A directed metric μ is a directed tree metric if and only if the tropical rank of –μ is at most two. Also we describe how tight spans and tropical polytopes are applied to the study of multicommodity flows in directed networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahuja R.K., Magnanti T.L., Orlin J.B.: Network Flows—Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Bandelt H.-J., Chepoi V., Karzanov A.: A characterization of minimizable metrics in the multifacility location problem. European J. Combin. 21(6), 715–725 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandelt H.-J., Dress A.W.M.: A canonical decomposition theory for metrics on a finite set. Adv. Math. 92(1), 47–105 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buneman P.: A note on the metric properties of trees. J. Combin. Theory Ser. B 17, 48–50 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charikar M., Makarychev K., Makarychev Y.: Directed metrics and directed graph partitioning problems. In: (eds) In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms., pp. 51–60. ACM, New York (2006)

  6. Chenchiah I.V., Rieger M.O., Zimmer J.: Gradient flows in asymmetric metric spaces. Nonlinear Anal. 71(11), 5820–5834 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chrobak M., Larmore L.L.: Generosity helps or an 11-competitive algorithm for three servers. J. Algorithms 16(2), 234–263 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Develin M., Santos F., Sturmfels B.: On the rank of a tropical matrix. In: Goodman, J.E., Pach, J., Welzl, E. (eds) Combinatorial and Computational Geometry., pp. 213–242. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  9. Develin M., Sturmfels B.: Tropical convexity. Documenta Mathematica 9(1–27), 205–206 (2004)

    MathSciNet  Google Scholar 

  10. Dress A.W.M.: Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces. Adv. Math. 53(3), 21–402 (1984)

    Article  MathSciNet  Google Scholar 

  11. Dress A.W.M., Huber K.T., Koolen J., Moulton V., Spillner A.: Basic Phylogenetic Combinatorics. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  12. Ford L.R. Jr., Fulkerson D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  13. Frank A.: On connectivity properties of Eulerian digraphs. In: Andersen, L.D., Jakobsen, I.T., Thomassen, C., Toft, B., Vestergaad, P.D. (eds) Graph Theory in Memory of G.A. Dirac (Sandbjerg 1985), pp. 179–194. North-Holland, Amsterdam (1989)

    Google Scholar 

  14. Herrmann S., Joswig M.: Splitting polytopes. Münster J. Math. 1, 109–141 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Herrmann, S.,Moulton, V.: Trees, tight-spans and point configuration. arXiv:1104.1538 (2011)

  16. Hirai H.: A geometric study of the split decomposition. Discrete Comput. Geom. 36(2), 331–361 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirai H.: Characterization of the distance between subtrees of a tree by the associated tight span. Ann. Combin. 10(1), 111–128 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hirai H.: Tight spans of distances and the dual fractionality of undirected multiflow problems. J. Combin. Theory Ser. B 99(6), 843–868 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hirai H.: Folder complexes and multiflow combinatorial dualities. SIAM J. Discrete Math. 25(3), 1119–1143 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hirai H., Koichi S.: On duality and fractionality of multicommodity flows in directed networks. Discrete Optim. 8(3), 428–445 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huson D.H., Rupp R., Scornavacca C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press Cambridge (2010)

    Book  Google Scholar 

  22. Ibaraki T., Karzanov A.V., Nagamochi H.: A fast algorithm for finding a maximum free multiflow in an inner Eulerian network and some generalizations. Combinatorica 18(1), 61–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Isbell J.R.: Six theorems about injective metric spaces. Comment. Math. Helv. 39, 65–76 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karzanov A.V.: Metrics with finite sets of primitive extensions. Ann. Combin. 2(3), 211–241 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karzanov A.V.: Minimum 0-extensions of graph metrics. European J. Combin. 19(1), 71–101 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lomonosov, M.V.: unpublished manuscript (1978)

  27. Lomonosov M.V.: Combinatorial approaches to multiflow problems. Discrete Appl. Math. 11(1), 1–93 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. Naor, J., Schwartz, R.: The directed circular arrangement problem. ACM Trans. Algorithms 6, Art. 47 (2010)

    Google Scholar 

  29. Papadopoulos, A., Théret, G.: On Teichmüller’s metric and Thurston’s asymmetric metric on Teichmüller space. In: Papadopoulos, A. (Ed.) Handbook of Teichmüller theory, Vol. I, pp. 111–204. European Mathematical Society (EMS), Zürich (2007)

  30. PatrinosA.N. , Hakimi S.L.: The distance matrix of a graph and its tree realization. Quart. Appl. Math. 30, 255–269 (1972/1973)

    Google Scholar 

  31. Schrijver A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer-Verlag, Berlin (2003)

    MATH  Google Scholar 

  32. Semple C., Steel M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  33. Simões-Pereira J.M.S.: A note on the tree realizability of a distance matrix. J. Combin. Theory 6, 303–310 (1969)

    Article  MATH  Google Scholar 

  34. Sturmfels B., Yu J.: Classification of six-point metrics. Electron. J. Combin. 11(1),–R44 (2004)

    MathSciNet  Google Scholar 

  35. Tansel, B.C., Francis, R.L., Lowe, T.J.: Location on networks: a survey. I-II. Management Sci. 29(4), 482–497; 498–511 (1983)

    Google Scholar 

  36. Zarecki K.A.: Constructing a tree on the basis of a set of distances between the hanging vertices. Uspekhi Mat. Nauk (in Russian) 20(6), 90–92 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Koichi, S. On Tight Spans for Directed Distances. Ann. Comb. 16, 543–569 (2012). https://doi.org/10.1007/s00026-012-0146-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-012-0146-5

Mathematics Subject Classification

Keywords

Navigation