Skip to main content
Log in

Microlocal branes are constructible sheaves

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let X be a compact real analytic manifold, and let T* X be its cotangent bundle. In a recent paper with Zaslow (J Am Math Soc 22:233–286, 2009), we showed that the dg category Sh c (X) of constructible sheaves on X quasi-embeds into the triangulated envelope F(T* X) of the Fukaya category of T* X. We prove here that the quasi-embedding is in fact a quasi-equivalence. When X is a complex manifold, one may interpret this as a topological analogue of the identification of Lagrangian branes in T* X and regular holonomic \({{\mathcal D}_X}\) -modules developed by Kapustin (A-branes and noncommutative geometry, arXiv:hep-th/0502212) and Kapustin and Witten (Commun Number Theory Phys 1(1):1–236, 2007) from a physical perspective. As a concrete application, we show that compact connected exact Lagrangians in T* X (with some modest homological assumptions) are equivalent in the Fukaya category to the zero section. In particular, this determines their (complex) cohomology ring and homology class in T* X, and provides a homological bound on their number of intersection points. An independent characterization of compact branes in T* X has recently been obtained by Fukaya et al. (Invent Math 172(1):1–27, 2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audin, M., Lalonde, F., Polterovich, L.: Symplectic rigidity: Lagrangian submanifolds. In: Holomorphic Curves in Symplectic Geometry, Progr. Math, vol. 117, pp. 271–321. Birkhäuser, Basel (1994)

  2. Beĭ linson, A.A.: Coherent sheaves on P n and problems in linear algebra (Russian). Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68–69; English translation: Functional Anal. Appl. 12 (1978), no. 3, 214–216 (1979)

  3. Bierstone E., Milman P.: Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. 67, 5–42 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhovsky L.: Homology of Lagrangian submanifolds in cotangent bundles. Israel J. Math. 143, 181–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen K.T.: Iterated integrals of differential forms and loop space homology. Ann. Math. 97(2), 217–246 (1973)

    Article  Google Scholar 

  6. Drinfeld V.: DG quotients of DG categories. J. Algebra 272(2), 643–691 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fukaya, K., Oh, Y.-G., Ohta, H., Ono, K.: Lagrangian intersection Floer theory—anomaly and obstruction. Kyoto preprint Math 00-17 (2000)

  8. Fukaya K., Oh Y.-G.: Zero-loop open strings in the cotangent bundle and Morse homotopy. Asian. J. Math. 1, 96–180 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Fukaya K., Seidel P., Smith I.: Exact Lagrangian submanifolds in simply-connected cotangent bundles. Invent. Math. 172(1), 1–27 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginsburg V.: Characteristic varieties and vanishing cycles. Invent. Math. 84, 327–402 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goresky M., MacPherson R.: Stratified Morse theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 14. Springer, Berlin (1988)

    Google Scholar 

  12. Harvey F.R., Lawson H.B. Jr: Finite volume flows and Morse theory. Ann. Math. 153(1), 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hori, K., Iqbal, A., Vafa, C.: D-branes and mirror symmetry. hep-th/0005247

  14. Kapranov, M., Vasserot, E.: Vertex algebras and the formal loop space. Publ. Math. Inst. Hautes tudes Sci. No. 100, pp. 209–269 (2004)

  15. Kapustin, A.: A-branes and noncommutative geometry. arXiv:hep-th/0502212

  16. Kapustin A., Witten E.: Electric–magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007)

    MathSciNet  Google Scholar 

  17. Kashiwara M., Schapira P.: Sheaves on manifolds. Grundlehren der Mathematischen Wissenschaften, vol. 292. Springer, Berlin (1994)

    Google Scholar 

  18. Kasturirangan R., Oh Y.-G.: Floer homology of open sets and a refinement of Arnol’d’s conjecture. Math. Z. 236, 151–189 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kasturirangan, R., Oh, Y.-G.: Quantization of Eilenberg–Steenrod axioms via fary functors. RIMS preprint (1999)

  20. Keller B.: On the cyclic homology of exact categories. J. Pure Appl. Algebra 136(1), 1–56 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Keller, B.: On differential graded categories. International Congress of Mathematicians, vol. II, pp. 151–190. Eur. Math. Soc., Zürich (2006)

  22. Khovanov, M., Rozansky, L.: Topological Landau–Ginzburg models on a world-sheet foam. arXiv:hep-th/0404189

  23. Kontsevich, M.: Lectures at ENS, Paris, Spring 1998, notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona

  24. Kontsevich, M., Soibelman, Y.: Homological mirror symmetry and torus fibrations. Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 203–263. World Sci. Publ., River Edge, NJ (2001)

  25. Loday, J.-L.: Cyclic homology. Appendix E by María O. Ronco. Second edition. Chap. 13 by the author in collaboration with Teimuraz Pirashvili. Grundlehren der Mathematischen Wissenschaften, vol. 301. Springer, Berlin (1998)

  26. Lalonde F., Sikorav J.-C.: Sous-variétés lagrangiennes et lagrangiennes exactes des fibrs cotangents. Comment. Math. Helv. 66(1), 18–33 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mau, S., Wehrheim, K., Woodward, C.T.: A -functors for Lagrangian correspondences (work in progress)

  28. Nadler D., Zaslow E.: Constructible sheaves and the Fukaya category. J. Am. Math. Soc. 22, 233–286 (2009)

    Article  MathSciNet  Google Scholar 

  29. Schmid W., Vilonen K.: Characteristic cycles of constructible sheaves. Invent. Math. 124, 451–502 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Seidel, P.: Vanishing cycles and mutation. European Congress of Mathematics, vol. II (Barcelona, 2000), pp. 65–85, Progr. Math., vol. 202. Birkhauser, Basel (2001)

  31. Seidel, P.: More about vanishing cycles and mutation. Symplectic geometry and mirror symmetry (Seoul, 2000), pp. 429–465. World Sci. Publ., River Edge, NJ (2001)

  32. Seidel, P.: Exact Lagrangian submanifolds in T* S n and the graded Kronecker quiver. Different faces of geometry, pp. 349–364. Int. Math. Ser. (NY), vol. 3. Kluwer/Plenum, New York (2004)

  33. Seidel, P.: Fukaya categories and Picard-Lefschetz Theory. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2008)

  34. Sikorav, J.-C.: Some properties of holomorphic curves in almost complex manifolds. In: Holomorphic Curves in Symplectic Geometry, pp. 165–189. Birkhäuser, Basel (1994)

  35. Smith, I.: Exact Lagrangian submanifolds revisited. Slides from talk at conference in honor of Dusa McDuff’s birthday, Stony Brook, October (2006)

  36. van den Dries L., Miller C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2), 497–539 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Viterbo, C.: Generating functions, symplectic geometry, and applications. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994), pp. 537–547. Birkhäuser, Basel (1995)

  38. Viterbo C.: Exact Lagrange submanifolds, periodic orbits and the cohomology of free loop spaces. J. Differ. Geom. 47(3), 420–468 (1997)

    MathSciNet  MATH  Google Scholar 

  39. Wehrheim, K., Woodward, C.T.: Functoriality for Lagrangian correspondences in Floer theory (2006, preprint)

  40. Wehrheim, K., Woodward, C.T.: Orientations for pseudoholomorphic quilts (in preparation)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Nadler.

Additional information

Dedicated to Paul S. Nadler

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadler, D. Microlocal branes are constructible sheaves. Sel. Math. New Ser. 15, 563–619 (2009). https://doi.org/10.1007/s00029-009-0008-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-009-0008-0

Mathematics Subject Classification (2000)

Navigation